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A genome-wide association study on growth traits of  
Korean commercial pig breeds using Bayesian methods

Jong Hyun Jung1,a, Sang Min Lee2,a, and Sang-Hyon Oh3,*

Objective: This study aims to identify the significant regions and candidate genes of 
growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and 
days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) 
populations.
Methods: A genome-wide association study (GWAS) was performed using single-nucleotide 
polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method 
was applied to calculate thresholds for the significance of SNP markers. The identified 
windows were considered significant if they explained ≥1% genetic variance. 
Results: A total of 28 window regions were related to genetic growth effects. Bayesian 
GWAS revealed 28 significant genetic regions including 52 informative SNPs associated 
with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with 
genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous 
functional validation were identified for these traits.
Conclusion: The identified SNPs within these regions hold potential value for future marker-
assisted or genomic selection in pig breeding programs. Consequently, they contribute to 
an improved understanding of genetic architecture and our ability to genetically enhance 
pigs. SNPs within the identified regions could prove valuable for future marker-assisted or 
genomic selection in pig breeding programs.

Keywords: Genome-wide Association Study; Growth Trait; Pig;  
Single Nucleotide Polymorphism 

INTRODUCTION

The pig breeding industry is comprised in several layers [1]. Due to these structural charac-
teristics of the industry, the maternal and paternal lines are separated and selected, respectively, 
maximizing hybrid vigor in the crosses. In addition, since breeding pigs are maintained 
through generations of candidate selection by performance tests, the genes of the selected 
individuals are transferred to the lower layer and used to produce excellent finishers [2]. 
Therefore, the performance of breeding pigs is a factor that determines competitiveness 
in the pig industry. Since it takes a long time to move traits from purebreds to finishers, 
the ripple effect on the improvement of excellent breeding pigs is very large. In domestic 
Korean GGP farms, the main breeds used are the Yorkshire, Landrace, and Duroc pure-
breds.
  In pig breeding programs, growth traits are economically important indicators of pig 
production performance and affect farm profits. Adjusted backfat thickness (ABF), average 
daily gain (ADG), and days to 90 kg body weight (DAYS90) are vital growth-related traits 
that are used to measure growth rate because of their significant impact on production effi-
ciency [3]. Effectively managing and improving these traits can lead to higher production 
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efficiency, better profitability, and a more sustainable and 
competitive pig farming operation. Pigs that grow faster with 
optimal backfat thickness and reach market weight more 
quickly are cost-effective for producers. Therefore, improve-
ments in growth traits are necessary in the pig industry.
  With the development of DNA technology that incorpo-
rates statistical methodology, it has become possible to study 
quantitative trait loci (QTL) or candidate genes [4,5]. Genome-
wide association studies (GWAS) are a powerful approach in 
genetics and genomics to identify genetic variants (single 
nucleotide polymorphisms [SNPs]) associated with specific 
phenotypic traits or diseases, and are widely used to detect 
effective causal alterations and define narrow genomic regions 
in contact with these alterations [6]. In association analysis, 
DNA markers related to major genes can be identified because 
a SNP chip that covers the entire genome is densely integrated 
with SNP markers.
  Bayesian methods in GWAS are invaluable when dealing 
with a large number of SNPs and a relatively small number 
of individuals [7]. In addition, by specifying an appropriate 
prior distribution for a SNP effect, only the effect affecting 
the phenotype is fitted to the model, and a small SNP effect 
is assumed to be zero depending on its π-value (a measure of 
statistical significance). By setting a threshold for SNP effects, 
the number of false positives during analysis can be con-
trolled. SNPs with small effects that do not pass this threshold 
may be considered as not having a significant impact on the 
phenotype. Therefore, it is advantageous to find the candi-
date region for GWAS because the inferences are based on 
joint posterior distribution, which accounts for all unknown 
parameters [8,9]. Furthermore, it is possible to increase the 
efficiency of genetic improvement in livestock by increasing 
the accuracy of genetic ability evaluation through additional 
information on DNA markers with significant effects dis-
covered during GWAS [10].
  The aim of this study was to identify significant regions 
and candidate genes related to ABF, ADG, and DAYS90 in 
commercial Korean GGP pig (Duroc, Landrace, and York-
shire) populations. This was achieved by conducting a GWAS 
using SNP chip platforms and the Bayesian method (BayesB 
with response variable). 

MATERIALS AND METHODS

Phenotypic data
In this study, phenotypic data were collected from purebred 
Duroc (38,941), Landrace (23,451), and Yorkshire (91,146) 
pigs raised at a GGP farm in Korea between 2005 and 2022. 
The ADG was obtained from the difference in final weight 
and initial weight divided by the number of feed intake days. 
The BFAT was calculated based on the average fat thickness 
values of the shoulder (on the fourth thoracic vertebrae), 

mid-back (on the last thoracic vertebrae), and loin (on the 
last lumbar vertebrae) measured using an amplitude mode 
(A-mode) ultrasound device (PIGLOG 105). The DAYS90 
was estimated according to the suggestions of the Korean 
Swine Performance Recording Standards (KSPRS), following 
previously reported procedures [3].

Genotypic data
Genomic data were collected using the Affymetrix Axiom 
53K, Affymetrix Axiom 650K (Affymetrix Inc., Santa Clara, 
CA, USA), and Illumina Porcine SNP60K v2 (Illumina, Inc., 
San Diego, CA, USA) platforms.
  A total of 5,359 pigs were included in the analysis. Spe-
cifically, 1,029 Duroc pigs were genotyped using Illumina60Kv2 
(818 pigs) and Axiom650K (211 pigs), 472 Landrace pigs 
were genotyped using Axiom650K (143 pigs) and Illumina
60Kv2 (329 pigs), and 3,858 Yorkshire pigs were genotyped 
using Axiom53K (479 pigs), Illumina60Kv2 (2,932 pigs), 
and Axiom650k (447 pigs).
  SNP markers without map information, those existing on 
sex chromosomes, and those with a call rate of 0.95 or less 
and genomic data that overlapped were excluded from the 
analysis. In total, 43,861, 52,580, and 52,403 SNPs from 
Duroc, Landrace, and Yorkshire pigs, respectively, were used 
for the analysis. The collected genomic data were analyzed by 
imputation with a medium-density (MD) platform (Illumina 
Porcine SNP60Kv2) using FImuteV3 [11] for each breed 
(Table 1). Since the FImputeV3 program does not provide 
an r-square value, the imputation accuracy was estimated 
using leave-one-out cross validation.

Statistical methods
Estimation of genetic parameters: To estimate the genetic pa-
rameters, a linear animal model including additive genetic 
effects and fixed effects (sex, contemporary group) was 
applied to the multivariate model. The likelihood function 
logarithm (loge L) was used to determine the most appropriate 
models for the trait. The analysis was performed using the 
ASREML4.1 program [12], and the analysis model was as 
follows:

  y = Xb+Zaua+e

where y is the vector of observation (ABF, ADG, DAYS90), 
X and Za are the incidence matrices for fixed and random 
effects, ua is the vector of the additive genetic effect, and e is 
the vector of the residual effect.
  Response variables: Response variables for genomic analysis 
were estimated using estimated genetic parameters, variance 
components, estimated breeding values (EBV), and reliability 
according to the model for the genetic evaluation of each 
trait. Genomic analysis typically involves estimating response 
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variables for specific traits. In this case, the response variables 
are related to growth traits such as ABF, ADG, and DAYS90. 
The estimates of genetic and residual variances and herita-
bility for these traits are shown in Table 2. 
  Deregressed estimated breeding values (DEBV) including 
parent average were re-estimated using the EBV and reli-
abilities of each individual to help provide more accurate 
and reliable estimates of an individual's genetic merit, par-
ticularly in situations where data is limited or unreliable. In 
addition, the weighting factor was calculated using the fol-
lowing formula [10]: 
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Table 1. Basic statistics of single-nucleotide polymorphism data set

Breed Description
Commercial genotyping platforms

Axiom 53K Axiom 650K Illumina 60Kv2

Duroc Total number of animals - 211 818
No. duplicated animals - 11 25
No. target animals - 200 764
No. reference animals - - 159
No. genotyped animals after imputation - - 923
Total number of SNPs - 658,692 61,565
No. markers on autosome - 592,052 58,863
No, Selected markers after QC - 592,024 58,845
No. markers for analysis - - 43,861

Landrace Total no. of animals - 143 329
No. duplicated animals - 11 28
No. reference animals - 132 301
No. target animals - - 132
No. genotyped animals after imputation - - 433
Total no. of SNPs - 658,692 61,565
Markers on autosome - 592,052 58,863
Selected markers after QC - 592,024 58,845
No. markers for analysis - - 52,580

Yorkshire Total no. of animals 479 393 2,932
No. duplicated animals 50 30 301
No. reference animals 429 364 2,631
No. target animals - - 2,631
No. genotyped animals after imputation - - 3,424
Total no. of SNPs 55,374 658,692 61,565
Markers on autosome 49,732 592,052 58,863
Selected markers after QC 49,624 592,024 58,845
No. markers for analysis - - 52,403

SNP, single-nucleotide polymorphism; QC, quality control.
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where yi is the response variable (DEBVs or EBVs), μ is the 
population mean, k is the number of markers, Zij is the allelic 
state (0, 1, 2) at marker j in individual i, uj is the random sub-
stitution effect for marker j, and δj indicates the presence or 
absence of a marker in the model (0 or 1).
  In the case of the threshold, to search for a significant 1 
Mb region through GWAS analysis, a region with ≥1% addi-
tive genetic variance explanatory power among the total 
genetic variance that can be explained by SNP markers is 
defined as a region with a significant effect. The model fre-
quency statistic was estimated and used to select SNP markers 
with significant effects on each trait. A total of 2,451 1 Mb 
regions were included in the total region, and the additive 
dielectric dispersion ratio of each region was approximately 
0.041% (100%/2,451).
  The BayesB method uses the t-distribution as a prior dis-
tribution for SNP marker effects, and is sampled from the prior 
assumption that each SNP marker has a different variance. 
This process was performed using the GenSel4R program 
[15].

RESULTS AND DISCUSSION

The average ADG for Duroc, Landrace, and Yorkshire pigs 
was 675±72 g, 646±66 g, and 612±75 g, the ABF was 12.83± 
2.40 mm, 12.83±2.60 mm, and 13.73±2.97 mm, and the 

DAYS90 was 136.7±11.2 days, 143.7±11.6 days, and 148.8± 
14.7 days, respectively (Table 3). GWAS was performed us-
ing SNP markers imputed to the Illumina PorcineSNP60. 
Bayesian GWAS applies a threshold for the significance of 
SNP markers based on significant windows (≥1% genetic 
variance). A single QTL can affect multiple SNPs because of 
the high linkage disequilibrium within adjacent SNPs [16].
  Therefore, to identify the significant 1 Mb windows, in-
cluding SNPs, GWAS was performed with three traits (ABF, 
ADG, and DAYS90) based on BayesB. A total of 28 window 
regions were found, including 52 informative SNPs based on 
their genetic effects (Tables 3 to 5; Figure 1). 

Adjusted backfat thickness
Analysis found eight significant windows (≥1% genetic vari-
ance) with 18 informative SNPs. For ABF, 16 genes were 
located on Sus Scrofa chromosome (SSC) 6 in Duroc pigs, 
SSCs 1, 10, 13, 15, and 18 in Landrace pigs, and SSC17 in 
Yorkshire pigs (Table 4). These regions explained 1.16% to 
2.24% of the total genetic variance for ABF, and 17 genes 
were annotated in these genomic regions.
  In Landrace pigs, the most significant 1 Mb window re-
gion, explaining 2.24% of the additive genetic variance, was 
captured on SSC18 at 46 Mb (H3GA0051040). In Duroc pigs, 
the most significant window, explaining 1.84% of the addi-
tive genetic variance, was captured on SSC6 at 138 Mb, and 

Table 2. Variance components and heritabilities for adjusted backfat thickness, average dairy gain, days to 90 kg by pig breed

Breeds Trait Genetic variance Residual variance Phenotypic variance Heritability

Duroc ADG 0.12 0.30 0.42 0.28
ABF 1.55 2.88 4..43 0.35
DAYS90 0.29 0.68 0.97 0.30

Landrace ADG 0.12 0.22 0.34 0.35
ABF 2.24 2.88 5.12 0.44
DAYS90 0.36 0.60 0.96 0.37

Yorkshire ADG 0.12 0.23 0.35 0.33
ABF 3.04 3.97 7.01 0.43
DAYS90 0.39 0.83 1.22 0.32

ABF, adjusted backfat thickness; ADG, average daily gain; DAYS90, days to 90 kg.

Table 3. Frequencies, means and standard deviations for adjusted backfat thickness, average dairy gain, days to 90 kg by pig breed

Breeds Sex N ABF (mm) ADG (g) DAYS90 (d)

Duroc Boar 17,523 12.74 ± 2.02 684.74 ± 70.29 134.05 ± 10.38
Gilt 21,418 12.86 ± 2.56 670.61 ± 73.85 138.64 ± 11.18
Total 38,941 12.83 ± 2.40 675.01 ± 72.21 136.71 ± 11.21

Landrace Boar 10,084 12.71 ± 2.73 643.74 ± 60.56 140.35 ± 10.42
Gilt 13,367 12.93 ± 2.42 648.59 ± 64.29 145.55 ± 12.29
Total 23,451 12.83 ± 2.60 646.21 ± 66.22 143.74 ± 11.62

Yorkshire Boar 36,458 13.55 ± 2.54 608.74 ± 71.10 145.64 ± 13.58
Gilt 54,688 13.97 ± 2.48 620.49 ± 70.97 149.77 ± 13.96
Total 91,146 13.73 ± 2.97 612.13 ± 75.10 148.82 ± 14.73

ABF, adjusted backfat thickness; ADG, average daily gain; DAYS90, days to 90 kg.
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included six SNPs (MARC0037040, M1GA0008914, DRGA 
0006864, ASGA0103810, ALGA0113757, and ALGA0036942). 
In Yorkshire pigs, the most significant window explained 
1.16% of the additive genetic variance and was captured on 
SSC17 at 13 Mb (ASGA0089601).
  The NFE2L3 gene adjacent to H3GA0051040, which was 
the most significant region in Landrace pigs, is required for 
myoblast differentiation and fusion in cellular processes, 
autophagy, and endoplasmic reticulum [17], and it is also 
associated with lipids in humans [18] and pigs [19].
  The MRPS22 gene, which located on SSC13 at the 80 Mb 
region, impairs mitochondrial mRNA translation and lowers 
coupling efficiency and energy storage, thereby altering the 
energy balance with potential consequences on lipid accu-
mulation and adiposity [20]. Moreover, it has been suggested 
as a new susceptibility gene for human obesity [21,22].
  All regions associated with ABF in Duroc pigs were found 

on SSC6. Although there have been no studies related to ABF, 
many studies have searched for the QTL in this SSC6 region 
associated with ABF [23-25]. In Landrace pigs, the SLC23A2 
gene on SSC17 at the 13 Mb region encodes sodium-coupled 
vitamin C transporter 2 (SVCT2), whose expression may be 
regulated by insulin-like growth factor signaling [26]. Similarly, 
its association with ABF has not been studied. Thus, research 
using a high-density genotyping chip is needed to identify 
the region.
 
Average daily gain
For ADG, 25 informative SNPs were identified in 10 signifi-
cant window regions (≥1% genetic variance) (Table 5). These 
regions explained 1.00% to 5.46% of the total genetic variance 
for ADG, and 31 genes were annotated in these genomic re-
gions. Candidate regions associated with ADG were identified 
in SSCs 1, 3, 5, 6, 10, 13, 15, and 17 in Duroc pigs, SSCs 10 

Table 4. Summary of informative single-nucleotide polymorphisms in the significant 1-Mb windows for adjusted backfat thickness by breed

Breed1) SSC_Mb GV (%) Informative SNP Position Effect Model 
frequency

Region 
annotation Gene annotation

DD 6_138 1.89 MARC0037040 138.70 0.055 0.132 Intergenic CRYZ (dist =  11,423)
FPGT (dist =  470,843)

M1GA0008914 138.50 0.070 0.161 Intergenic LHX8 (dist =  152,772)
TYW3 (dist =  163,579)

DRGA0006864 138.20 –0.030 0.081 Intergenic LHX8 (dist =  222,275)
TYW3 (dist =  94,076)

ASGA0103810 138.00 0.018 0.057 Intergenic LHX8 (dist =  341)
TYW3 (dist =  316,010)

ALGA0113757 138.60 –0.021 0.064 Intergenic CRYZ (dist =  299,075)
FPGT (dist =  183,191)

ALGA0036942 138.90 0.029 0.079 Intergenic CRYZ (dist =  36,545)
FPGT (dist =  445,721)

6_16 1.63 MARC0033972 16.80 0.109 0.260 Intergenic U6 (dist =  635,716)
PSMD7 (dist =  58,944)

MARC0029800 16.40 0.053 0.142 Intergenic U6 (dist =  592,247)
PSMD7 (dist =  102,413)

ALGA0034650 16.30 0.063 0.159 Intergenic U6 (dist =  482,216)
PSMD7 (dist =  212,444)

LL 18_46 2.24 H3GA0051040 46.94 0.280 0.551 Intergenic NFE2L3 (dist =  690,741)
NPVF (dist =  141,966)

13_80 2.11 ALGA0071112 80.14 0.288 0.390 Intronic MRPS22
1_254 1.96 ALGA0009437 254.44 0.309 0.459 Intergenic RGS3 (dist =  232,910)

ZNF618 (dist =  33,149)
15_14 1.3 H3GA0043799 14.01 –0.051 0.141 Intergenic HNMT (dist =  244,837)

THSD7B (dist =  75,963)
ALGA0084000 14.03 0.065 0.170 Intergenic HNMT (dist =  265,141)

THSD7B (dist =  55,659)
ALGA0083995 14.05 –0.052 0.142 Intergenic HNMT (dist =  286,129)

THSD7B (dist =  34,671)
ALGA0083978 14.30 –0.015 0.053 Intronic THSD7B

10_7 1.2 ALGA0056744 7.31 0.161 0.357 Intergenic ESRRG (dist =  289572)
GPATCH2 (dist =  295957)

YY 17_13 1.16 ASGA0089601 13.97 0.725 0.843 Intronic SLC23A2

SSC, Sus Scrofa chromosome; GV, genetic variance; SNP, single-nucleotide polymorphism.
1) DD, Duroc; LL, Landrace; YY, Yorkshire.
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and 11 in Landrace pigs, and SSCs 1, 5, and 17 in Yorkshire 
pigs.
  In Landrace pigs, the most significant 1 Mb window re-
gion explained 5.46% of the additive genetic variance and 
was captured on SSC10 at the 11 Mb region (DRGA0010301). 
In Duroc pigs, the most significant window explained 3.53% 
of the genetic variance and was captured on SSC3 at the 123 
Mb region (MARC0091117). In Yorkshire pigs, the most sig-
nificant window explained 1.46% of the genetic variance and 
was captured on SSC5 at the 95 Mb region (ASGA0026863).
  The FAM177B gene adjacent to SSC10 at the 11 Mb re-

gion, which was the region most significantly related to ADG, 
is related to body size in Hulun Buir sheep [27]. The TRIB2 
gene, which is close to SSC3 at the 123 Mb region, the most 
significant region in Duroc pigs, is related to growth traits in 
Thoroughbred pigs [28]. The RBMS3 gene, which is close to 
SSC13 at the 15 Mb region, is related to growth traits in cattle 
[29]. 
  In Yorkshire pigs, the MGAT4C gene close to SSC5 at the 
95 Mb region coincided with the region discovered in a study 
on Nero Siciliano pigs [30], which is also consistent with the 
results of a study on Italian Large White pigs [31].

Table 5. Summary of informative single-nucleotide polymorphisms in the significant 1-Mb windows for average daily gain by breed

Breed1) SSC_Mb GV (%) Informative SNP Position Effect Model 
frequency

Region 
annotation

Gene 
annotation

DD 3_123 3.53 MARC0091117 123.40 –1.122 0.673 Intergenic U2 (dist =  481,335)
TRIB2 (dist =  426,227)

17_44 3.52 MARC0028846 44.00 1.430 0.663 Intergenic CHD6 (dist =  421,373)
PTPRT (dist =  27,816)

6_164 2.98 ASGA0098375 164.10 2.335 0.339 Intronic MKNK1
15_111 2.84 ALGA0086770 111.00 0.672 0.350 Intergenic U2 (dist =  1,253)

MAP2 (dist =  527,654)
16_25 2.55 ASGA0072766 25.00 –0.033 0.126 Intergenic U2 (dist =  496,722)

PTGER4 (dist =  392,964)
ALGA0089851 25.00 –0.037 0.143 Intergenic U2 (dist =  563,131)

PTGER4 (dist =  326,555)
ALGA0089849 25.00 0.047 0.171 Intergenic U2 (dist =  529,039)

PTGER4 (dist =  360,647)
13_15 2.11 ALGA0120330 15.00 0.199 0.668 Intergenic ZCWPW2 (dist =  312,619)

RBMS3 (dist =  472,631)
1_171 1.4 MARC0001172 171.80 0.067 0.291 Intergenic FBXO33 (dist =  1,166,208)

U6 (dist =  188,990)
5_15 1.25 M1GA0007662 15.30 0.065 0.304 Intergenic FAIM2 (dist =  26,363)

AQP2 (dist =  24,393)
ASGA0024735 15.30 0.045 0.250 Intronic NCKAP5L

10_7 1.04 M1GA0013649 7.00 0.010 0.084 Intronic GPATCH2
DRGA0010240 7.00 0.011 0.074 Intronic SPATA17
DRGA0010231 7.00 –0.098 0.438 Intergenic ESRRG (dist =  488,896)

GPATCH2 (dist =  96,633)
LL 10_11 5.46 DRGA0010301 11.51 0.916 0.9159 Intergenic FAM177B (dist =  17,005)

DISP1 (dist =  7,902)
11_18 1.26 MARC0113984 18.00 0.056 0.0563 Intronic RCBTB1

CASI0005912 18.11 0.349 0.3486 Intronic EBPL, ARL11
ALGA0061162 18.12 0.052 0.0518 Intronic RCBTB1

YY 5_95 1.46 ASGA0026863 95.04 0.257 0.992 Intergenic C12orf50 (dist =  521,803)
MGAT4C (dist =  1,138,851)

5_71 1.08 ASGA0026241 71.33 0.011 0.191 Intronic SLC2A13
ASGA0026236 71.16 0.056 0.338 Intronic ABCD2
ALGA0032782 71.20 –0.118 0.450 Intronic C12orf40

1_159 1.08 ALGA0006599 159.66 0.093 0.770 Intergenic RNF152 (dist =  58,322)
CDH20 (dist =  157,254)

17_15 1.00 INRA0052808 15.89 0.042 0.493 Intergenic BMP2 (dist =  135,631)
HAO1 (dist =  847,594)

INRA0052780 15.65 0.041 0.460 Intergenic FERMT1 (dist =  522,008)
BMP2 (dist =  90,074)

SNP, single-nucleotide polymorphism; ADG, average daily gain; SSC, Sus Scrofa chromosome; GV, genetic variance. 
1) DD, Duroc; LL, Landrace; YY, Yorkshire.



www.animbiosci.org  813

Jung et al (2024) Anim Biosci 37:807-816

  The RNF152 gene adjacent to SSC1 at the 159 Mb region 
coincided with the region discovered in a study on ADG in 
Landrace×Large Whites [32] and that discovered in a study 
on ABF and DAYS100 in Duroc pigs. Lee et al [16] exam-
ined ABF, DAYS90, loin muscle area, and lean percentage in 
Duroc pigs.
  The FERMT1 gene adjacent to SSC17 at the 15 Mb region 
positively regulates the transforming growth factor beta (TGF-
beta) receptor signaling pathway in pigs and is significantly 
associated with carcass length. The BMP2 gene is involved in 
the TGF-beta signaling pathway, playing a role in bone and 
cartilage development, and has been proposed as a strong 
candidate gene for carcass length [33]. In addition, it has 
been associated with body weight and body conformation 
traits in pigs [27].

Days to 90 kg 
For DAYS90, 25 SNPs were identified in eight significant 
windows (≥1% genetic variance) (Table 6). The candidate 
regions associated with DAYS90 were identified at SSCs 1, 5, 
6, 10, 12, 15, and 16 in Duroc pigs, SSC10 in Landrace pigs, 
and SSCs 5 and 17 in Yorkshire pigs. These regions explained 
1.02% to 5.07% of the total genetic variance, and 28 genes 
were annotated in these genomic regions.
  In Landrace pigs, the most significant 1 Mb window re-
gion explained 5.07% of the additive genetic variance and 
was captured on SSC10 at the 11 Mb region (DRGA0010301). 

In Duroc pigs, the most significant region, explaining 4.86% 
of the variance, was captured on SSC6 at the 80 Mb region 
(H3GA0018314). In Yorkshire pigs, the most significant re-
gion explained 1.54% and was captured on SSC5 at the 71 
Mb region (INRA0019895, ASGA0026241, ASGA0026236, 
and ALGA0032782). 
  The LACTBL1 gene is located on SSC6 at the 80 Mb re-
gion, the most significant region in Duroc pigs, and has 
been associated with weight among the British population 
[34].
  The FAIM2 gene, which is located on SSC5 at the 15 Mb 
region, is correlated with muscle mass in cattle and it is a 
candidate gene for growth and carcass traits [35]. It is also 
closely related to obesity in humans, and many studies have 
been conducted with the MC4R gene [36,37]. NCKAP5L, 
located at the same position, has also been reported as a can-
didate gene for daily weight gain, which is a growth trait in 
cattle [38,39]. 
  PIK3R1, located on SSC6 at the 45 Mb region, is directly 
related to lipid metabolism [40] and is involved in skeletal 
muscle differentiation and proliferation [41]. In addition, 
Chen et al  [42] reported that it regulates feed intake and 
fat deposition in Chinese Laiwu pigs, while another study 
reported a QTL closely related to backfat thickness in pigs 
[43,44].
  For the identified significant regions, there were six over-
lapping windows for ADG and DAYS90, which explained 

Figure 1. Manhattan plots for genome-wide association study (GWAS) based on Bayesian B (BayesB) methods of adjusted backfat thickness 
(ABF), average dairy gain (ADG), days to 90 (90DAYS) by pig breeds.
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the different proportions of genetic variance in these two 
traits. For complex quantitative traits, it was assumed that 
the linear effects of genes fit the average of the traits com-
pletely. However, in practice, the effects of genes are not always 
linear for traits, and the nonlinear assumption is more appro-
priate, which means that genes contribute differently and 
QTL has pleiotropic effects between traits. The region with 
the largest explained genetic variance for ADG and DAYS90, 
located on SSC10 at the 57 Mb region, seemingly had pleio-
tropic effects on growth traits in pigs.

CONCLUSION

We identified 28 significant window regions associated with 
three growth traits (ABF, ADG, and DAYS90) in Duroc, 
Landrace, and Yorkshire pig populations using the Bayesian 
GWAS method. The genetic variance of the identified windows 
varied from 1.00% to 5.46%.
  Furthermore, 14 genes with related functional validation 
in previous studies were identified as candidate genes for 
growth traits. Such a full use of phenotypic and genotypic 
data and genealogical information will further advance our 

Table 6. Summary of informative single-nucleotide polymorphisms in the significant 1-Mb windows for 90DAYS by breeds

Breed1) SSC_Mb GV (%) Informative SNP Position Effect Model 
frequency

Region 
annotation Gene annotation

DD 6_80 4.86 H3GA0018314 80.70 2.035 0.723 Intronic LACTBL1
5_15 1.38 M1GA0007662 15.30 –0.048 0.175 Intergenic FAIM2 (dist =  26,363)

AQP2 (dist =  24,393)
ASGA0024735 15.30 –0.111 0.382 Intronic NCKAP5L

16_47 2.38 MARC0030690 47.00 –1.396 0.390 Intergenic PIK3R1 (dist =  500,109)
SLC30A5 (dist =  261,000)

16_45 2.16 MARC0002703 45.00 1.228 0.329 Intergenic CD180 (dist =  242,747)
PIK3R1 (dist =  604,060)

16_25 2.4 ASGA0072766 25.00 0.040 0.105 Intergenic U2 (dist =  496,722)
PTGER4 (dist =  392,964)

ALGA0089851 25.00 0.048 0.126 Intergenic U2 (dist =  563,131)
PTGER4 (dist =  326,555)

ALGA0089849 25.00 –0.060 0.153 Intergenic U2 (dist =  529,039)
PTGER4 (dist =  360,647)

15_111 1.12 ALGA0086770 111.00 –0.484 0.247 Intergenic U2 (dist =  1,253)
MAP2 (dist =  527,654)

12_43 1.77 ALGA0116086 43.00 0.110 0.276 Intronic RAB11FIP4
1_163 1.09 MARC0004843 163.30 0.016 0.088 Intronic IGDCC4

ASGA0005079 163.40 0.036 0.148 Intergenic IGDCC4 (dist =  7,455)
DPP8 (dist =  3,381)

ALGA0006725 163.80 –0.089 0.311 Intronic IGDCC4
1_13 1.73 ALGA0001167 13.30 –1.600 0.282 Intergenic MYCT1 (dist =  141,875)

ESR1 (dist =  386,485)
10_7 1.07 M1GA0013649 7.00 –0.013 0.075 Intronic GPATCH2

DRGA0010240 7.00 –0.035 0.144 Intronic SPATA17
DRGA0010231 7.00 0.109 0.321 Intergenic ESRRG (dist =  488,896)

GPATCH2 (dist =  96,633)
LL 10_11 5.07 DRGA0010301 11.51 –0.342 0.861 Intergenic FAM177B (dist =  17,005)

DISP1 (dist =  7,902)
YY 5_71 1.54 INRA0019895 71.30 0.121 0.194 Intronic SLC2A13

ASGA0026241 71.33 –0.023 0.216 Intronic SLC2A13
ASGA0026236 71.16 –0.142 0.387 Intronic ABCD2
ALGA0032782 71.20 0.220 0.434 Intronic C12orf40

5_95 1.5 ASGA0026863 95.04 –0.459 0.990 Intergenic C12orf50 (dist =  521,803)
MGAT4C (dist =  1,138,851)

17_15 1.02 INRA0052808 15.89 –0.062 0.416 Intergenic BMP2 (dist =  135,631)
HAO1 (dist =  847,594)

INRA0052780 15.65 –0.089 0.563 Intergenic FERMT1 (dist =  522,008)
BMP2 (dist =  90,074)

SNP, single-nucleotide polymorphism; SSC, Sus Scrofa chromosome; GV, genetic variance; DAYS90, days to 90 kg.
1) DD, Duroc; LL, Landrace; YY, Yorkshire. 
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understanding of genetic architecture and accelerate the ge-
netic improvement of economically important traits in pigs. 
In addition, the SNPs within the identified regions may be 
useful for marker-assisted selection or genomic selection in 
future pig breeding programs.
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