• Title/Summary/Keyword: single nucleotide polymorphism(SNP)

Search Result 569, Processing Time 0.041 seconds

Highly Polymorphic Bovine Leptin Gene

  • Yoon, D.H.;Cho, B.H.;Park, B.L.;Choi, Y.H.;Cheong, H.S.;Lee, H.K.;Chung, E.R.;Cheong, I.C.;Shin, H.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1548-1551
    • /
    • 2005
  • The leptin, an anti-obesity protein, is a hormone protein expressed and secreted mainly from adipocyte tissue, and involved in regulation of body weight, food intake and energy metabolism. In an effort to discover polymorphism(s) in genes whose variant(s) might be implicated in phenotypic traits of growth, we have sequenced exons and their boundaries of leptin gene including 1,000 bp upstream of promoter region with twenty-four unrelated Korean cattle. Fifty-seven sequence variants were identified: fourteen in 5' flanking region, twenty-seven in introns, eight in exons, and eight in 3' flanking region. By pair-wise linkage analysis among polymorphisms, ten sets of SNPs were in absolute linkage disequilibrium (LD) (|D'| = 1 and $r^2$ = 1). Among variants identified, thirty-six SNPs were newly identified, and twenty-one SNPs, which were reported in other breeds, were also confirmed in Korean cattle. The allele frequencies of variants were quite different among breeds. The information from SNPs of bovine leptin gene could be useful for further genetic studies of this gene.

Identification of functional SNPs in genes and their effects on plant phenotypes

  • Huq, Md. Amdadul;Akter, Shahina;Nou, Ill Sup;Kim, Hoy Taek;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Single nucleotide polymorphism (SNP) is an abundant form of genetic variation within individuals of species. DNA polymorphism can arise throughout the whole genome at different frequencies in different species. SNP may cause phenotypic diversity among individuals, such as individuals with different color of plants or fruits, fruit size, ripening, flowering time adaptation, quality of crops, grain yields, or tolerance to various abiotic and biotic factors. SNP may result in changes in amino acids in the exon of a gene (asynonymous). SNP can also be silent (present in coding region but synonymous). It may simply occur in the noncoding regions without having any effect. SNP may influence the promoter activity for gene expression and finally produce functional protein through transcription. Therefore, the identification of functional SNP in genes and analysis of their effects on phenotype may lead to better understanding of their impact on gene function for varietal improvement. In this mini-review, we focused on evidences revealing the role of functional SNPs in genes and their phenotypic effects for the purpose of crop improvements.

Fabrication of Nanogap-Based PNA Chips for the Electrical Detection of Single Nucleotide Polymorphism

  • Park, Dae-Keun;Park, Hyung-Ju;Lee, Cho-Yeon;Hong, Dae-Wha;Lee, Young;Choi, In-Sung S.;Yun, Wan-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.540-540
    • /
    • 2012
  • Selective detection of single nucleotide polymorphism (SNP) of Cytochrome P450 2C19 (CYP2C19) was carried out by the PNA chips which were electrically-interfaced with interdigitated nanogap electrodes (INEs). The INEs whose average gap distance and effective gap length were about ~70 nm and ${\sim}140{\mu}m$, respectively, were prepared by the combination of the photo lithography and the surface-catalyzed chemical deposition, without using the e-beam lithography which is almost inevitable in the conventional lab-scale fabrication of the INEs. Four different types of target DNAs were successfully detected and discriminated by the INE-based PNA chips.

  • PDF

Large Cohort Association of Single Nucleotide Polymorphism of PLA2G4A Gene with White Blood Cell Counts in Korean Population

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.71-75
    • /
    • 2012
  • The PLA2G4A catalyzes the hydrolysis of membrane phospholipids to release arachidonic acid, which is metabolized into lipid-based cellular hormones that regulate inflammatory response. The circulating blood cell numbers can be influenced by stress, infection or inflammation. Quantitative blood cell count traits analysis for the 19 SNPs in the PLA2G4A gene in the Korean Association Resource (KARE) cohort (7551 subjects) was performed. The only one SNP (rs10752979) in the all blood cell count was satisfied with the Bonferroni corrected P-value (<0.00263). Furthermore, 6 of the 19 SNPs in the PLA2G4A gene showed a weak or moderate association with blood cell count (P-values: 0.0048~0.042), suggesting the clue of an association between the PLA2G4A gene and blood cell count, especially white blood cell count. This study may provide insight into the genetic basis of blood cell count related with reaction of infection.

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

Effective Analysis Of SNP Related Gastric Cancer Using SNP (SVM을 이용한 효율적인 위암관련 SNP 정보분석)

  • Kim Dong-Hoi;Kim Yu-Seop;Cheon Se-Hak;Cheon Se-Cheol;Ham Ki-Baek;Kim Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.435-438
    • /
    • 2006
  • Single Nucleotide Polymorphism(SNP)는 인간 유전자 서열의 0.1%에 해당하는 부분으로 이는 각 개인의 체질 및 각종 유전질환과 밀접한 관련이 있다고 알려져 있으며 이 SNP 정보를 이용 각종 질환의 유전적 원인규명에 대한 많은 생물학적 연구가 진행되고 있다. 그러나 아직 SNP를 이용한 효율적인 분석방법에 대한 전산학적 연구는 많지 않다. 본 논문에서는 대표적인 패턴인식기 중 하나인 Support Vector Machine(SVM)을 이용 한국인의 대표적인 유전질환으로 알려진 위암에 대한 예측율을 실험하였다. 실험 데이터는 간 및 소화기 질환 유전체 센터에서 얻어진 위 질환 환자를 대상으로 하였으며 실험 결과 예측율은 67.3%로 이는 Case Based Reasoning(CBR)방법의 55% 보다 더 좋은 예측 결과를 보였다.

  • PDF

Automated Analysis of TDGS Image for SNP Discovery (SNP 발견을 위한 TDGS (Two-Dimensional Gene Scanning) 영상의 분석)

  • Chang, Hwan;Park, You-Na;Lee, Bog-Ju
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.238-240
    • /
    • 2003
  • 게놈 프로젝트에 의해 인간 유전자 영기서열이 밝혀지면서 개개인의 유전자에 나타나는 SNP(Single Nucleotide Polymorphism)을 분석하여 질병의 진단과 예후, 치료와 예방이 미래에 가능하게 되었다. 본 논문은 그러한 SNP 분석을 위한 자동 분석 시스템의 영상 처리 과정으로서, 기존의 육안을 통해 분석하였던 TDGS 영상을 본 시스템의 자동적인 영상 처리 과정을 통해 SNP 분석을 위한 디지털 패턴을 추출한다. SNP 분석을 위해 사용되는 샘플은 대략 수백개가 되는데, 실험이라는 특성상 영상에 나타나는 불규칙한 요소들이 많고. 영상의 상태가 좋지 않은 경우 명암도가 낮은 반점들의 구분이 힘들게 된다. 본 논문에서는 TDGS 영상의 지역적 특성을 가장 잘 반영하기 위한 동적 이진화의 새로운 척도를 제안하였고, 영상에서 잡영과 배경을 제거한 후 남겨진 관심영역을 반점으로 판별하여 이를 디지털 패턴으로 추출한 결과를 보여 준다.

  • PDF

Identification of Ethnically Specific Genetic Variations in Pan-Asian Ethnos

  • Yang, Jin Ok;Hwang, Sohyun;Kim, Woo-Yeon;Park, Seong-Jin;Kim, Sang Cheol;Park, Kiejung;Lee, Byungwook;The HUGO Pan-Asian SNP Consortium
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2014
  • Asian populations contain a variety of ethnic groups that have ethnically specific genetic differences. Ethnic variants may be highly relevant in disease and human differentiation studies. Here, we identified ethnically specific variants and then investigated their distribution across Asian ethnic groups. We obtained 58,960 Pan-Asian single nucleotide polymorphisms of 1,953 individuals from 72 ethnic groups of 11 Asian countries. We selected 9,306 ethnic variant single nucleotide polymorphisms (ESNPs) and 5,167 ethnic variant copy number polymorphisms (ECNPs) using the nearest shrunken centroid method. We analyzed ESNPs and ECNPs in 3 hierarchical levels: superpopulation, subpopulation, and ethnic population. We also identified ESNP- and ECNP-related genes and their features. This study represents the first attempt to identify Asian ESNP and ECNP markers, which can be used to identify genetic differences and predict disease susceptibility and drug effectiveness in Asian ethnic populations.

Effects of Single Nucleotide Polymorphism Marker Density on Haplotype Block Partition

  • Kim, Sun Ah;Yoo, Yun Joo
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.196-204
    • /
    • 2016
  • Many researchers have found that one of the most important characteristics of the structure of linkage disequilibrium is that the human genome can be divided into non-overlapping block partitions in which only a small number of haplotypes are observed. The location and distribution of haplotype blocks can be seen as a population property influenced by population genetic events such as selection, mutation, recombination and population structure. In this study, we investigate the effects of the density of markers relative to the full set of all polymorphisms in the region on the results of haplotype partitioning for five popular haplotype block partition methods: three methods in Haploview (confidence interval, four gamete test, and solid spine), MIG++ implemented in PLINK 1.9 and S-MIG++. We used several experimental datasets obtained by sampling subsets of single nucleotide polymorphism (SNP) markers of chromosome 22 region in the 1000 Genomes Project data and also the HapMap phase 3 data to compare the results of haplotype block partitions by five methods. With decreasing sampling ratio down to 20% of the original SNP markers, the total number of haplotype blocks decreases and the length of haplotype blocks increases for all algorithms. When we examined the marker-independence of the haplotype block locations constructed from the datasets of different density, the results using below 50% of the entire SNP markers were very different from the results using the entire SNP markers. We conclude that the haplotype block construction results should be used and interpreted carefully depending on the selection of markers and the purpose of the study.

Development of a CAPS marker for the identification of the Lentinula edodes cultivar, 'Sanmaru 2ho' (표고버섯 품종 '산마루2호'를 구분할 수 있는 CAPS marker 개발)

  • Moon, SuYun;Lee, Hwa-Yong;Ka, Kang-Hyeon;Koo, Chang-Duck;Ryu, HoJin
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.51-56
    • /
    • 2018
  • In Korea, the oak mushroom (Lentinula edodes) is highly preferred by consumers in the food industry and makes up about 97.7% of the total forest mushroom production. This indicates that the oak mushroom is an important non-timber forest product in Korea. Recently, the breeding and development of new cultivars of L. edodes have been actively initiated, and the development of molecular markers that are able to identify and discriminate the new cultivars is crucial for protecting the breeder's rights. This study was carried out to develop a cleaved amplified polymorphic sequence (CAPS) marker for the identification and discrimination of a new cultivar, Sanmaru 2ho from the 37 other oak mushroom cultivars. A single nucleotide polymorphism (SNP) was identified at the $1,803,483^{rd}$ position of scaffold2 in the genome of Sanmaru 2ho. The amplified DNA containing the SNP of Sanmaru 2ho was uniquely not cleaved by the restriction enzyme, Hha I, and thus Sanmaru 2ho was successfully distinguished from the other oak mushroom cultivars.