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Abstract Single nucleotide polymorphism (SNP) is an 

abundant form of genetic variation within individuals of 

species. DNA polymorphism can arise throughout the whole 

genome at different frequencies in different species. SNP 

may cause phenotypic diversity among individuals, such as 

individuals with different color of plants or fruits, fruit size, 

ripening, flowering time adaptation, quality of crops, grain 

yields, or tolerance to various abiotic and biotic factors. SNP 

may result in changes in amino acids in the exon of a gene 

(asynonymous). SNP can also be silent (present in coding 

region but synonymous). It may simply occur in the noncoding 

regions without having any effect. SNP may influence the 

promoter activity for gene expression and finally produce 

functional protein through transcription. Therefore, the iden-

tification of functional SNP in genes and analysis of their 

effects on phenotype may lead to better understanding of 

their impact on gene function for varietal improvement. In 

this mini-review, we focused on evidences revealing the role 

of functional SNPs in genes and their phenotypic effects for 

the purpose of crop improvements.

Keywords Functional SNPs, Genetic diversity, Phenotypic 

variation, Biotic and abiotic stresses

Introduction

Crop plants are very important for human being, therefore 

different strategies are using for their improvement accordance 

to current demands. Among these strategies, plant breeding 

program is a natural way of variety development. During 

breeding programs, a lot of genetic variations are arisen, 

which are corresponding to the phenotypes; such as quality of 

crops, grain yields, different colors of plants or fruits, size of 

fruits, and tolerance to various biotic and abiotic stresses 

(Vidal et al. 2012; Jang et al. 2015). Genetic diversity is also 

generated in different crop species through domestication of 

the same species in different geographical regions. The most 

common form of genomic variation is single nucleotide 

variation in the genome within the individuals. Analysis of 

DNA variation through DNA sequencing of a target gene 

regulating phenotypes is a good way to identify causal genes 

for the traits. The recent advances in sequencing technology 

are giving great opportunity for plant breeders to find out 

genetic diversity in different breeding populations, especially for 

the discovery of functional SNP (single nucleotide polymorphism) 

in causal genes and development of SNP markers, which are 

associated with diverse agronomic traits in crops (Vidal et al. 

2012). Most of the crop plants contain high nutritional value, 

which provides some particular nutrients that have high impact 

to maintain healthy human body. These nutrients may vary 

largely depending on growing conditions, varieties and mutations 

in functional genes (Schreiber et al. 2014). 

  Sequencing of many crop plant genomes is already completed, 

which was a major milestone for plant research (Huq et al. 

2016). Reference genome sequence is essential for measuring 

genetic polymorphisms among individuals of same species. 

In order to identify the sequence diversity within crop species 

like rice, potato, tomato, maize, etc., a lot of resequencing data 

are now available (Causse et al. 2013; Chen et al. 2014; Xu et 

al. 2014; Chung et al. 2014). These data contributed to 

evidence suggesting that during process of domestication, 
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mutation, multiplication, selection breeding and exchange of 

cultivars, a huge number of polymorphisms were spontaneously 

or artificially generated in the genome of different individuals 

of same species. These changes in genome can alter the functions 

of important genes and ultimately make the phenotypic variations 

in plants (Vidal et al. 2012; Shi et al. 2015; Shirasawa et al. 

2016). The most abundant DNA polymorphisms in the genome 

sequences are SNPs and are thought to play a major role in the 

induction of phenotypic variations. There are many reports 

about the gene specific or genome-wide functional SNP 

discovery in different breeding varieties or lines, which are 

associated with different phenotypic changes (Kharabian- 

Masouleh et al. 2012; Kumar et al. 2014; Jang et al. 2015). In 

this paper, we focused on the evidences revealing the role of 

functional SNPs of genes and their phenotype effects for crop 

improvements.

SNP and its significance

SNP is a variation at a single position in DNA sequence 

among individuals of same species. In short, SNP is the 

polymorphism occurring within DNA samples with difference 

at single base. SNPs are the most common DNA polymorphisms 

in genome sequences of human, animals, and plants and they 

are thought to play a major role in the induction of phenotypic 

variations. According to international SNP map working group, 

human genome sequence contains 1.42 million SNPs and 

average one SNP per 1.9 kb (Sachidanandam et al. 2001). 

Also in plants, SNP polymorphisms are found in high density 

across the genome (Ching et al. 2002). In Nipponbare rice 

genome, 0.64 SNP was found per one kb (Jeong et al. 2013), 

while in tomato average 6.1 SNP per one kb was observed in 

the whole genome (Kim et al. 2014).

  Different DNA markers are widely used for analysis of 

genetic diversity of plants, their evolutionary studies, association 

mapping as well as diagnostics, fingerprinting, and breeding 

applications. Among all DNA markers, SNPs are the most 

abundant and robust, feasible for automated high-throughput 

genotyping, and available for multiple assay options using 

different technology platforms to meet the demand for genetic 

studies and molecular breeding in crop plants (Steemers and 

Gunderson 2007; Alkan and Eichler 2011). In recent years, 

SNPs have gained much interest in the scientific and breeding 

community that could be used as potential genetic markers, 

which may be identified effectively in every gene (Rafalski 

2002). SNPs also can identify the genomic diversity of 

species to demonstrate the speciation and evolution, and 

associate genomic variations with phenotypic traits (McNally 

et al. 2009). The major applications of SNP are described shortly.

SNP for genetic mapping 

Genetic map refers to the arrangement of genes, identification 

of the locus of a gene and measurement of distances between 

genes. Construction of genetic maps are essential tools in 

plant breeding for genetic improvement as they are able to 

identify the gene location and quantitative trait loci (QTL), as 

well as crucial tools for genome sequence assembly and 

comparative genomic analysis and map based cloning. Biallelic 

nature of SNP, their high abundance in genome, uniform 

genome distribution and cost effectiveness (Ganal et al. 2009) 

make them an ideal marker for constructing new genetic maps 

compared to other genetic markers, which are often multiallelic 

(Kruglyak 1997). Therefore, SNP-based genetic maps have 

been developed in many economically important agricultural 

species such as cucumber (Wei et al. 2014), rice (Xie et al. 

2010), maize (Buckler et al. 2009), apple (Sun et al. 2015), 

soybean (Akond et al. 2013), cotton (Byers et al. 2012), 

Brassica (Li et al. 2009) etc. SNPs also have been considered 

as one of the ideal marker for genome wide association mapping, 

which have led to the discovery of thousands to millions of 

SNPs in last few years and made it possible to produce 

genome-wide haplotypes of large numbers of genotypes. In 

many plant species, such type of studies were reported like 

Arabidopsis (Aranzana et al. 2005), rice (Huang et al. 2010), 

maize (Poland et al. 2011), barley (Pasam et al. 2012) etc.

SNP for evolutionary studies 

SNPs can be used for evolutionary studies of genome that can 

reveal about population history, how breeding system and 

selection affect variation at genetic level. Because, generally 

SNP is used for study of sequence variation among species 

and such type of variations are present at all levels of evolution 

and ultimately SNP can provide an understanding of how 

modern genome has evolved. The commonly used markers 

for evolutionary studies are SSRs (simple sequence repeats) 

and mitochondrial DNA which may be misinterpreted due to 

homoplasy (Morin et al. 2004). It is possible to avoid this 

problem by using SNP markers that represent single base 

nucleotide substitutions (Vignal et al. 2002). Many successful 

reports are already published about the use of SNPs to study 

the evolution of genes such as WAG-2 (wheat AG-2) in wheat 

(Wei et al. 2011).

Techniques for SNP genotyping

A large number of techniques have been developed for the 

identification of SNP polymorphisms in plants. Selection of 
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Fig. 1 Overview of SNP discovery in plants through genotyping 

by sequencing (GBS) system

the technique depends on the cost, time, availability, reliability 

factors. There are many reports that described the different 

methodologies of SNP genotyping (Gut 2001; Kumar et al. 

2012). From all of these methodologies, direct DNA sequencing 

technologies are considered as the most used and benefited for 

SNP identification. 

  Sequencing-based techniques were first invented at 1977 

through Sanger method which depends on a combination of 

deoxy- and dideoxy-labeled chain terminator nucleotides 

(Sanger et al. 1977a). In the same year, the first complete 

genome of bacteriophage phi X174 was sequenced by this 

method (Sanger et al. 1977b). But in the last decade, several 

NGS (next generation sequencing) technologies (Roche/454, 

Illumina, SOLiD) have outperformed Sanger-based sequencing 

in throughput and overall cost (Kircher and Kelso 2010). With 

a throughput of hundreds of millions to several billions of 

bases per run, NGS are able to identify many SNPs in a species 

at much lower cost in a short time (Mardis 2007). Identification 

of SNP using NGS is reported in different plants such as 

Arabidopsis (Zhang and Borevitz 2009), rice (McNally et al. 

2009), potato (Hamilton et al. 2011), eggplant (Barchi et al. 

2011), maize (Jones et al. 2009), wheat (Allen et al. 2011), 

barley (Waugh et al. 2009), cotton (Byers et al. 2012), 

common beans (Cort´es et al. 2011), soybean (Hyten et al. 

2010), oat (Oliver et al. 2011) etc. In order to identify 

functional SNPs, first, need to prepare the genomic library 

through DNA fragmentation and in-vitro adaptor ligation, 

then clonal amplification by PCR, sequencing, data analysis 

and identification of SNP using software. For sequencing, 

different companies use their own technology, such as Roche/ 

454 uses pyrosequencing protocol, SOLiD platform uses 

sequencing by ligation protocol and Illumina technology uses 

sequencing by synthesis protocol. 

Genotyping by sequencing (GBS)

Most recently a new method has been derived for SNP 

genotyping using illumina NGS platform to reduce the cost 

for DNA sequencing, is known as GBS which was developed 

in 2011 (Elshire et al. 2011). GBS is a sequencing by 

synthesis strategy. GBS system is becoming increasingly 

important, effective and unique tool for SNP identification in 

plant species because of its low cost, reduced sample handling, 

no size fractionation, fewer PCR and purification steps, no 

reference sequence limits, efficient barcoding and easiness to 

scale up (Davey et al. 2011). A schematic representation of 

GBS technology for SNP discovery from plants was shown in 

Figure 1. GBS is an ideal method for SNP genotyping in 

plants from single gene markers to whole genome profiling 

(Poland and Rife 2012). GBS experiments were needed to do 

isolation of genomic DNA from plant materials, then quantification 

and normalization, digestion with appropriate restriction enzyme, 

then ligate the adapter at both end of digested DNA with a bar 

coding (BC) region in adapter 1, following PCR amplification 

and sequencing. Finally, bioinformatic analysis of sequencing 

data is carried out and find out the SNPs (Fig. 2). Compared to 

other methods, GBS is a considerably less complicated, 

fragmentation and ligation of appropriate adapters are more 

straightforward, single-well digestion of genomic DNA, and 

fewer DNA purification steps make it easy. Moreover, GBS 

method avoids the separation step of fragments by size 

resulting in reduced sample handling and ultimately become 

cost effective. The low cost of GBS system makes it a 

powerful tool for SNP genotyping in a variety of crop species 

and populations as well as other plants. GBS has been shown 

as a valid tool for genomic diversity studies (Fu and Peterson 

2011; Lu et al. 2013; Fu et al. 2014), which is already able to 

prove itself as an excellent system for SNP identification in 

plant breeding programs even in the absence of reference 

genome sequences or without any previous information about 

DNA polymorphism. Available reference genome makes 

easy to data analysis and identification of SNPs, but it is not 

essential in GBS system, which is a great advantage to plant 

breeders for crop improvement programs. Many reports 

already published about the use of GBS system for genetic 
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Fig. 2 Data analysis for SNP identification. Reads are aligned 

to reference sequence to find differences between the reference 

genome and newly sequenced genome. This concept is taken 

from Kumar et al. (2014) with modification

analysis, marker development and high throughput SNP 

genotyping of various crops such as rice, wheat, yellow 

mustard, rapeseed, lupin, lettuce, switchgrass, soybean, maize, 

etc. (Poland et al. 2012; Fu et al. 2014; Spindel et al. 2013; 

Truong et al. 2012; Lu et al. 2013; Sonah et al. 2013).

SNP polymorphisms in different crop plants

Rice 

Rice is the main food for more than half of the world's 

population. The complete genome sequencing of rice in 2002 

using bacterial artificial chromosomes (BAC) based approach 

was a major milestone for rice genomic research. In which 

genome size was 389 Mb, approximately three times larger 

than the model plant Arabidopsis and contains total of 37,544 

non-transposable element related protein coding sequences 

(Yu et al. 2002; Goff et al. 2002; International Rice Genome 

2005). After that a lot of genome resequencing data of rice are 

available that showed the high sequence diversity especially 

single nucleotide polymorphisms. For rice SNP genotyping, 

several high throughput array-based genotyping platforms 

have been developed which were considered critically important 

for dissecting phenotype-genotype associations in rice (McCouch 

et al. 2010; Tung et al. 2010; Zhao et al. 2011). Yu et al. 

(2014) identified more than four millions SNPs from around 

500 rice landraces. Jeong et al. (2013) generated a total of 

1,165 × 10
6
 raw reads and detected 1,154,063 DNA poly-

morphisms between the Korean rice accessions and Nipponbare. 

In average 0.64 SNP was found per one kb of Nipponbare 

genome, while Dongjin (Korean rice accession) genome contains a 

lower number of SNP (0.45 SNP/kb). Chen et al. (2014) 

resequenced 801 rice varieties and screened more than 10,000,000 

SNP loci. Huang et al. (2009) analyzed and detected a total of 

1,226,791 SNPs between indica cv. “9311” and japonica cv. 

“Nipponbare” that was average 3.2 SNPs/kb. Also, Parida et 

al. (2012) identified and validated SNPs in biotic and abiotic 

stress-responsive rice genes and determined the population 

structure in rice.

Wheat 

Wheat is one of the top three staple grains in the world, along 

with rice and maize whose genome size is around 17 Gb. The 

international wheat genome sequencing consortium revealed 

a chromosome-based draft genome sequence of hexaploid 

bread wheat in 2014 (The International Wheat Genome 

Sequencing Consortium 2014). The modern cultivated wheat 

also known as bread wheat (Triticum aestivum L.) with 

allohexaploid genome (AABBDD) is created by natural 

hybridization and spontaneous chromosome doubling between 

the tetraploid Triticum turgidum (AABB genome) and diploid 

Aegilops tauschii (DD genome) (Dubcovsky and Dvorak 

2007). Allen et al. (2011) identified SNPs from different 

varieties of wheat and found 3251 SNPs in Cadenza, 2944 

SNPs in Rialto, 3492 SNPs in Savannah and 3792 SNPs in 

Recital variety where Avalon variety was used as reference. 

Wang et al. (2014) discovered a total of 46,977 SNPs from 

eight mapping populations of wheat.

Maize 

Maize is the most produced cereal crop in the world which 

whole genome was first sequenced at 2009. The genome size 

of maize is 2.3 Gb with more than predicted 32,000 genes 

(Schnable et al. 2009). DNA sequence diversity in maize 

populations is more than human. Tenaillon et al. (2001) 

measured the sequence diversity in 21 loci distributed along 

chromosome 1 of maize. They sequenced from 25 inbred lines 

and data indicated that the maize has an average one SNP per 

104 bases between two randomly sampled sequences that was 

higher than human or Drosophila melanogaster. Xu et al. 

(2014) identified SNPs from resequencing results of 15 inbred 

lines against B73 reference genome. A total of 6,385,011 

SNPs were identified from 15 inbred lines. Chromosome 1 

contains highest number of SNP (2,511,910) than other 

chromosomes of maize and that was 8.34 SNPs per Kb. Jones 

et al. (2009) obtained 1,088 loci from public sequencing data 

of 60 inbred lines and found total 9,194 SNPs that was 

average one SNP per 43 bases. Kumar et al. (2014) selectively 

amplified and sequenced four root genes (Rtcl, Rth3, Rum1 

and Rul) from 74 maize inbred lines and found DNA 

polymorphisms. They sequenced 2386 bases across four 

candidate genes involved in root development, resulting in 78 

SNPs and SNP frequency was one per 31 bases. In another 

study, 383,145 SNPs were identified from 21 diverse inbred 

maize lines. These single nucleotide polymorphisms have the 

potential to broaden functional diversity and generate phenotypic 

variation in populations that may lead to new adaptations and 
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the modification of important agronomic traits (Muraya et al. 

2015).

Barley 

The entire genome of barley was first sequenced at 2012 and 

the total genome size was around 5.1 Gb, containing 79,379 

transcript clusters, including 26,159 high-confidence genes 

(Mayer et al. 2012). Xia et al. (2013) investigated SNPs in 

small heat shock protein 17.8 (HSP17.8) across 210 barley 

accessions and discovered eleven SNPs including 10 from the 

coding region which are deleterious for HSP17.8 gene function. 

In another study, Clark et al. (2003) reported the effect of 

single nucleotide polymorphisms on the functional properties 

of the β-amylase of barley. They found three SNPs in coding 

region of β-amylase (bmy1) from a malt (Morex) and a feed 

(Steptoe) barley that caused differences in the amino acid 

sequences. Rostoks et al. (2005) identified SNPs by rese-

quencing unigene fragments from eight diverse accessions of 

barley and observed the SNP frequency in 877 unigenes was 1 

per 200 bases. 

Soybean 

The reference genome sequence of soybean is available from 

2010 which make it easy to identify the DNA polymorphisms 

among soybean populations. The genome size is approximately 

1.1 Gb with 46,430 protein coding genes (Schmutz et al. 

2010). Lee et al. (2015) identified more than four millions 

high quality SNPs by resequencing 16 soybean accessions. 

Chung et al. (2014) obtained 3,871,469 high quality SNPs by 

resequencing of 10 cultivated and 6 wild soybean accessions 

after mapping reads for each accession to the reference genome 

sequence. Genic regions contain 20.4% (788,809 SNPs) 

SNPs and rest of the SNPs were located in the intergenic 

regions. Jang et al. (2015) discovered a single nucleotide 

polymorphism in an endo-1,4-β-Glucanase gene of soybean 

that altered the amino acid sequence and possibly reducing or 

eliminating its affinity for substrates in permeable cultivars. 

Vidal et al. (2012) found more than 6,000 SNPs in drought 

stress related genes from two contrasting cultivars of soybean, 

sensitive (BR 16) and tolerant (Embrapa 48). Among these 

SNPs, 165 are related to tolerance to abiotic stresses. Shi et al. 

(2015) identified three functional SNP in soybean (two for 

Rhg1 locus and one for Rhg4 locus) which are responsible for 

soybean cyst nematode resistance. In another study, Lam et al. 

(2010) re-sequenced a total of 17 wild and 14 cultivated 

soybean genomes and discovered a set of 205,614 tag SNPs 

that may be useful for QTL mapping and association studies. 

They also concluded that the allelic diversity in wild soybeans 

is higher than cultivated soybeans. From another study, 

209,903 SNPs were found from several soybean accessions. 

The average distance between adjacent SNPs was 4.5 kb 

(Song et al. 2013). Zhou et al. (2015) obtained 9,790,744 

single nucleotide polymorphisms (SNPs) by resequencing 

302 wild and cultivated soybean accessions after mapping 

against the soybean reference genome which make easy to 

identify the multiple loci and genes for important agronomic 

traits. 

Potato 

Potato genome sequencing consortium first revealed the entire 

genome sequence of potato at 2011 that was 850 Mb in size. 

Hamilton et al. (2011) discovered 575,340 SNPs by sequencing 

normalized cDNA prepared from three commercial potato 

cultivars (Atlantic, Premier Russet, and Snowden). 230 SNPs 

were found in Allene Oxide Synthase 2 gene of 184 tetraploid 

potato individuals which are associated with field resistance 

to late blight in populations of tetraploid potato cultivars 

(Pajerowska-Mukhtar et al. 2009). Uitdewilligen et al. (2013) 

sequenced 807 target genes from 83 tetraploid potato cultivars 

using genotyping by sequencing technique, and finally obtained 

129,156 sequence variants where SNP density was 1 per 24 

bases in exons and 1 per 15 bases in introns.

Tomato 

The complete genome of tomato has been sequenced and 

assembled by tomato genome consortium at 2012 which is 

enabling the identification of genome-wide SNPs and considered 

as a model for genomic research in Solanaceae, as well as for 

studying crop breeding (Tomato Genome Consortium 2012; 

Kim et al. 2014). The total genome size of cultivated tomato 

(Solanum lycopersicum) is approximately 950 Mb and a total 

of 34,727 protein coding genes in tomato genome were 

predicted by the international tomato annotation group (ITAG) 

(Tomato Genome Consortium 2012, http://www.uk-sol.org). 

According to Causse et al. (2013), genome sequencing of the 

eight tomato lines including S. cerasiforme and S. lycopersicum 

yielded a total of 4,290,679 unique SNPs when comparing 

each genome separately to the reference sequence. Total 

number of SNP varied widely from one line to another and 

also varied largely between different chromosomes. Chromosomes 

4, 5, 7, 8, 9 and 11 contain highest number of SNPs and that is 

more than 350,000 SNPs per chromosome. On the other hand, 

chromosomes 1, 6, and 10 contain lowest number of SNPs 

(less than 150,000 unique SNPs per chromosome) (Causse et 
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Fig. 3 A schematic representation of the role of SNP in gene function that can influence enzyme activity by changing amino acids. 

Met, Methionine; Ala, Alanine; Ser, Serine; Ile, Isoleucine; Leu, Leucine, Val, Valine; Tyr, Tyrosine; Arg, Arginine; Gly, Glycine; 

Glu, Glutamic acid and Thr, Threonine. This concept is taken from Jang et al. (2015) with modification

al. 2013). Kim et al. (2014) discovered 4,680,647 putative 

SNPs from two accessions of S. pimpinellifolium by comparing 

with reference, of which 89.9% (4,210,454) were homo and 

10.1% (470,193) were hetero-type SNPs. The total number of 

SNP and the density of SNP in different chromosomes also 

varied widely. An average 6.1 SNPs/kb was observed in the 

whole genome. In another study, around 1.5 million SNPs 

were identified from each resequencing data of six tomato 

lines by mapping onto tomato reference genome. They also 

identified nine SNP loci that were significantly associated 

with eight morphological traits (Shirasawa et al. 2013). The 

100 tomato genome sequencing consortium (2014) reported 

that the SNP frequency in tomato genome is significantly 

higher in intergenic regions (89.47 ± 3.03%) than in genic 

regions (7.55 ± 2.19% in introns and 2.33 ± 0.68% in exons) 

for all accessions of cultivated tomato (Solanum lycopersicum). 

Also, many studies are reported about the SNP discovery in 

tomato and the role of these SNPs in gene function and 

development of agronomic traits (Shirasawa et al. 2016; 

Shirasawa et al. 2013; Hirakawa et al. 2013; Hamilton et al. 

2012).

Other crops 

There are so many other crop plants whose full genome 

sequence have been completed such as grape (Velasco et al. 

2007), cucumber (Huang et al. 2009), apple (Velasco et al. 

2010), banana (Hont et al. 2012), oil palm (Singh et al. 2013), 

eggplant (Hirakawa et al. 2014) etc. These reference genome 

sequences help the plant breeders to discover SNP among 

different cultivars or breeding lines which facilitate the 

development and selection of improved crop varieties.

Effect of SNPs on gene function

Single Nucleotide Polymorphism may influence the promoter 

activity for gene expression, transcriptional and translational 

efficiency (LeVan et al. 2001). Therefore, they may be 

responsible for phenotypic variations among individuals for 

improving of agronomical traits. A gene contains two parts, 

exon and intron. Intron is removed during post transcriptional 

modification but the exons are finally translated into amino 

acid sequence and produce enzyme. So, the SNP in the exon 

part (coding region) is most important because they can affect 

the gene function. SNPs in the coding region are of two types, 

synonymous and asynonymous SNPs. Synonymous SNPs do 

not affect the amino acid sequence but asynonymous SNPs 

change the amino acid sequence of protein and may influence 

the enzyme activity (Fig. 3). There are many reports about the 

effect of SNP on gene function in different crop plants. One 

study conducted by Schreiber et al. (2014) and identified 

SNPs in plastidic starch phosphorylase PHO1 gene of potato 
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that changed some amino acids. This change might cause the 

reduced enzyme activity and decreases the starch breakdown. 

The ultimate result of that is to increase starch and decrease 

sugar in tuber of potato. Potato with decreased reducing sugars 

has positive effects on the quality of processed products such 

as chips, French fries etc. Fridman et al. (2004) discovered an 

SNP in an invertase gene of tomato that changed an amino 

acid near the catalytic site of the invertase crystal, affecting 

enzyme activity, which was responsible for sugar yield. In 

rice, 66 functional SNPs were discovered in exonic regions 

from 18 genes involved in starch synthesis. A novel SNP was 

reported in Glucose-6-Phosphate Translocator 1 (GPT1) gene 

at the position 1188 of GPT1 gene that alters amino acid 

associated with amylose and resistant-retrograded starch 

content (Kharabian-Masouleh et al. 2012). Clark et al. (2003) 

examined the effect of SNP on the activity of β-amylase 

(bmy1) gene from barley and found that SNPs have high effect 

on the enzyme activity. They found only three SNPs between 

Morex and Steptoe that altered the three amino acids at the 

positions 115, 165, and 430, which made 67% more bmy1 

activity of Steptoe than the bmy1 from Morex. From this 

study, they concluded that SNPs in the coding region of bmy1 

gene greatly affect the activity of β-amylase enzyme. Kumar 

et al. (2014) identified SNPs from several genes Rtcl (rootless 

concerning crown and seminal roots like protein), Rth3 

(roothairless 3), Rum1 (rootless with undetectable meristems 

1), and Rul1 (Rum1-like 1) that involved in maize root 

development and observed that these polymorphisms were 

significantly associated with seedling root traits in maize and 

suggested that the SNPs existing in the examined genes can be 

used to improve the quality of maize root. Jang et al. (2015) 

developed a new cultivar of soybean, Tachinagaha through 

the insertion of a quantitative trait locus, qHS1 that is 

responsible for hard seed from the impermeable (hard-seeded), 

wild soybean (G. soja) into the permeable cultivar Kariyutaka. 

The seed coat of resulted new cultivar Tachinagaha was more 

rigid than its parent cultivar due to increasing amount of β- 

1,4-glucans in the outer layer of the seed coat. The qHS1 locus 

encoded an endo-1,4-β-glucanase and sequencing results 

revealed one SNP in endo-1,4-β-glucanase gene that altered 

an amino acid, effecting on enzyme activity and increasing 

the amount of β-1,4-glucans, resulting rigid, impermeable 

seed in new cultivar. 165 functional SNPs were identified 

from 127 abiotic stress related genes of soybean (Glycine 

max) and established that these SNPs play an important role in 

tolerance to drought stress (Vidal et al. 2012). In another 

study, Xia et al. (2013) discovered four functional SNPs in 

HSP17.8 gene of different barley accessions that control some 

agronomic traits in barley. Pajerowska-Mukhtar et al. (2009) 

identified SNP polymorphisms in StAOS2 (Allene Oxide 

Synthase 2) gene, encodes an enzyme involve in the defense 

signaling pathway in potato. Among these SNPs, two SNPs at 

the StAOS2 locus, StAOS2_snp691 and StAOS2_snp692 are 

involved with increased tolerance to late blight disease of 

potato. Hirakawa et al. (2013) examined the genome-wide 

SNP in tomato and their effect on gene functions. They found 

that when the SNPs are located on the functional sites of 

candidate genes could directly affect the gene expressions and 

protein functions, also might be related with phenotypic 

differences among tomato lines. Parida et al. (2012) investigated 

SNPs in stress-responsive rice genes and assessed the functional 

and adaptive significance of the validated SNPs in biotic and 

abiotic stress tolerance in rice.

Conclusion

As SNPs can change the amino acid that might affect the 

enzyme activity, so the study of functional SNPs is very 

important regarding crop improvements. It is important to 

know the location of SNP in the genome because if the SNP is 

present in the coding region can highly affect the activity and 

thermostability level of the enzyme. Sometimes it is also 

depends on the substituted amino acid positions because some 

amino acid controls the activity of enzyme. Recent technological 

advances make it easy to find out functional SNP from various 

breeding lines which could be used for crop improvements. 

The success stories indicate that SNPs in the functional parts 

of the gene may control the level of biotic and abiotic stresses 

and may develop various abiotic and biotic stress tolerance 

crop varieties through modifying enzyme activity. 
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