• Title/Summary/Keyword: simple Lie algebra

Search Result 26, Processing Time 0.025 seconds

THE STRUCTURE OF A CONNECTED LIE GROUP G WITH ITS LIE ALGEBRA 𝖌=rad(𝖌)⊕ 𝔰𝒍(2,𝔽)

  • WI, MI-AENG
    • Honam Mathematical Journal
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 1995
  • The purpose of this study is to construct the structure of the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$, which conforms to Stellmacher's [4] Pushing Up. The main idea of this paper comes from Stellmacher's [4] Pushing Up. Stelhnacher considered Pushing Up under a finite p-group. This paper, however, considers Pushing Up under the connected Lie group G with its Lie algebra $g=rad(g){\oplus}sl(2, \mathbb{F})$. In this paper, $O_p(G)$ in [4] is Q=exp(q), where q=nilrad(g) and a Sylow p-subgroup S in [7] is S=exp(s), where $s=q{\oplus}\{\(\array{0&*\\0&0}\){\mid}*{\in}\mathbb{F}\}$. Showing the properties of the connected Lie group and the subgroups of the connected Lie group with relations between a connected Lie group and its Lie algebras under the exponential map, this paper constructs the subgroup series C_z(G)

  • PDF

CRYSTAL B(λ) IN B(∞) FOR G2 TYPE LIE ALGEBRA

  • Kim, Min Kyu;Lee, Hyeonmi
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.427-442
    • /
    • 2014
  • A previous work gave a combinatorial description of the crystal B(${\infty}$), in terms of certain simple Young tableaux referred to as the marginally large tableaux, for finite dimensional simple Lie algebras. Using this result, we present an explicit description of the crystal B(${\lambda}$), in terms of the marginally large tableaux, for the $G_2$ Lie algebra type. We also provide a new description of B(${\lambda}$), in terms of Nakajima monomials, that is in natural correspondence with our tableau description.

The Real Rank of CCR C*-Algebra

  • Sudo, Takahiro
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.223-232
    • /
    • 2008
  • We estimate the real rank of CCR C*-algebras under some assumptions. A applications we determine the real rank of the reduced group C*-algebras of non-compac connected, semi-simple and reductive Lie groups and that of the group C*-algebras of connected nilpotent Lie groups.

A LINEAR APPROACH TO LIE TRIPLE AUTOMORPHISMS OF H*-ALGEBRAS

  • Martin, A. J. Calderon;Gonzalez, C. Martin
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.117-132
    • /
    • 2011
  • By developing a linear algebra program involving many different structures associated to a three-graded H*-algebra, it is shown that if L is a Lie triple automorphism of an infinite-dimensional topologically simple associative H*-algebra A, then L is either an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism. If A is finite-dimensional, then there exists an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism F : A $\rightarrow$ A such that $\delta$:= F - L is a linear map from A onto its center sending commutators to zero. We also describe L in the case of having A zero annihilator.

NOTES ON AN ALGEBRA WITH SCALAR DERIVATIONS

  • Choi, Seul Hee
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.179-186
    • /
    • 2014
  • In this paper, we consider the simple non-associative algebra $\overline{WN(\mathbb{F}[e^{{\pm}x^r},0,1]_{(\partial,\partial^2)})}$. There are many papers on finding the derivations of an associative algebra, a Lie algebra, and a non-associative algebra (see [2], [3], [4], [5], [6], [7], [12], [14]). We find all the derivations of the algebra $\overline{WN(\mathbb{F}[e^{{\pm}x^r},0,1]_{(\partial,\partial^2)})}$.

GROBNER-SHIRSHOV BASES FOR IRREDUCIBLE sp4-MODULES

  • Lee, Dong-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.711-725
    • /
    • 2008
  • We give an explicit construction of Grobner-Shirshov pairs and monomial bases for finite-dimensional irreducible representations of the simple Lie algebra $sp_4$. We also identify the monomial basis consisting of the reduced monomials with a set of semistandard tableaux of a given shape, on which we give a colored oriented graph structure.

NEW ALGEBRAS USING ADDITIVE ABELIAN GROUPS I

  • Choi, Seul-Hee
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.407-419
    • /
    • 2009
  • The simple non-associative algebra $N(e^{A_S},q,n,t)_k$ and its simple sub-algebras are defined in the papers [1], [3], [4], [5], [6], [12]. We define the non-associative algebra $\overline{WN_{(g_n,\mathfrak{U}),m,s_B}}$ and its antisymmetrized algebra $\overline{WN_{(g_n,\mathfrak{U}),m,s_B}}$. We also prove that the algebras are simple in this work. There are various papers on finding all the derivations of an associative algebra, a Lie algebra, and a non-associative algebra (see [3], [5], [6], [9], [12], [14], [15]). We also find all the derivations $Der_{anti}(WN(e^{{\pm}x^r},0,2)_B^-)$ of te antisymmetrized algebra $WN(e^{{\pm}x^r}0,2)_B^-$ and every derivation of the algebra is outer in this paper.

DERIVATIONS OF A WEYL TYPE NON-ASSOCIATIVE ALGEBRA ON A LAURENT EXTENSTION

  • Choi, Seul-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.627-634
    • /
    • 2006
  • A Weyl type algebra is defined in the book ([4]). A Weyl type non-associative algebra $\={WP_{m,n,s}}$ and its restricted sub-algebra $\={WP_{m,n,s_{\gamma}}}$ are defined in various papers ([1], [12], [3], [11]). Several authors 0nd all the derivations of an associative (Lie or non-associative) algebra in the papers ([1], [2], [12], [4], [6], [11]). We find all the non-associative algebra derivations of the non-associative algebra $\={WP_{0,2,0_B}$, where $B=\{{\partial}_0,\;{\partial}_1,\;{\partial}_2,\;{\partial}_{12},\;{\partial}^2_1,\;{\partial}^2_2\}$.

NOTES ON ${\overline{WN_{n,0,0_{[2]}}}$ II

  • CHOI, SEUL HEE
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.583-593
    • /
    • 2005
  • The Weyl-type non-associative algebra ${\overline{WN_{g_n,m,s_r}}$ and its subalgebra ${\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [2], [3], [9], [11], [12]. We find the derivation group $Der_{non}({\overline{WN_{1,0,0_{[2]}}})$ the non-associative simple algebra ${\overline{WN_{1,0,0_{[2]}}}$.

  • PDF