• 제목/요약/키워드: silver nanoparticle

검색결과 167건 처리시간 0.025초

은나노입자의 방사성 동위원소 운반체 적용 유효성 검증 연구 (Feasibility Study on Silver Nanoparticle Application to a Radioisotope Carrier)

  • 장범수;이주상;박해준;김화정;박상현
    • 방사선산업학회지
    • /
    • 제5권3호
    • /
    • pp.197-202
    • /
    • 2011
  • In this study, an Ag-polyaniline-silica (Ag-PANI-silica) nanoparticle was evaluated as a radioisotope carrier. An Ag-PANI-silica nanoparticle was incubated in the $^{125}I$ solution for a duration of 24 hr to test its radioisotope absorptivity. During the incubation, radioactivity of the nanoparticle was measured at 3, 6, 12, and 24 hr. After a 24 hr incubation, $^{125}I$-Ag-PANI-silica nanoparticle was incubated in a fresh saline for a duration of 48 hr to check its stability. Additionally, the $^{125}I$-Ag-PANI-silica nanoparticle was injected to the ICR mouse to investigate its in-vivo distribution characteristics. The $^{125}I$ absorption yield of the Ag-PANI-silica nanoparticle was higher than 95% after a 6 hr incubation period in the $^{125}I$ solution. And $^{125}I$-Ag-PANI-silica was stable for 48 hr at 80% yield at room temperature. The SPECT/CT image of a mouse that received $^{125}I$-Ag-PANI-silica complex showed that the $^{125}I$-Ag-PANI-silica complex was distributed in the lung, stomach and thyroid at 30 min post injection. From these results, the Ag-PANI-silica nanoparticle has good radio-iodine carrying property and can be applicable for the purpose of diagnosis and therapy.

은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성 (Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste)

  • 박승우;손재홍;심상보;최연빈;배동식
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

Preparation and characterization of expanded graphite/Ag nanoparticle composites for the improvement of thermal diffusion

  • Hong, Seok Hwan;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.410-415
    • /
    • 2018
  • Expanded graphite (EG)/Ag nanoparticle composites were synthesized by the chemical reduction of Ag ions, followed by the addition of expanded graphite into an Ag reducing solution. The prepared composites showed uniform dispersion of Ag nanoparticles on the surface of expanded graphite and exhibited relatively higher thermal conductivities than those of pure expanded graphite. In the case of 10% Ag content in the composite, the thermal conductivity in the thickness direction was 78% higher than the pure expanded graphite. We suggest that EG/Ag nanoparticle composites are a strong candidate for advanced heat spreading material.

액상/기상중 전기선 폭발법을 이용한 은 나노유체의 제조 및 특성평가에 관한 연구 (Synthesis and Characterization of Silver Nanofluid Using Pulsed Wire Evaporation Method in Liquid-Gas Mixture)

  • 김창규;이경자;이창규
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.468-472
    • /
    • 2009
  • The silver nanofluids were synthesized by the pulsed wire evaporation (PWE) method in a liquid-gas mixture. The size and microstructure of nanoparticles in the deionized water were investigated by a particle size analyzer (PSA), transmission electron microscope (TEM), and scanning electron microscope (SEM). Also, the synthesized nanofluids were investigated in order to assess the stability of dispersion of nanofluid by the zetapotential analyzer and dispersion stability analyzer. The results showed that the spherical silver nanoparticle formed in the deionized water and mean particle size was about 50 nm. Also, when explosion times were in the range of 20$\sim$200 times, the absolute value of zeta potential was less than -27 mV and the dispersion stability characteristic of low concentration silver nanofluid was better than the high concentration silver nanofluid by turbiscan.

은 나노입자 합성을 위한 Bacterial Cellulose 생산 세균의 분리 및 특성 (Isolation and Characterization of Bacterial Cellulose-Producing Bacteria for Silver Nanoparticle Synthesis)

  • 유지연;장은영;손용준;박수연;손홍주
    • 한국미생물·생명공학회지
    • /
    • 제46권2호
    • /
    • pp.120-126
    • /
    • 2018
  • 환경친화적으로 항균성이 부여된 상처치료용 BC 드레싱을 개발하기 위한 기초연구로서, 은 이온에 대해 내성이 있으면서 은 나노입자를 생합성할 수 있는 초산균을 분리 및 동정하였다. 나아가 실험균주에 의한 BC 생산 조건을 조사하였다. 부패된 포도껍질로부터 분리된 G7 균주는 0.1 mM $AgNO_3$ 존재 하에서 생육할 수 있었으며, 16S rRNA 유전자의 염기서열 분석에 의거하여 Acetobacter intermdius로 동정되었다. 탄소원으로 2% glucose, 질소원으로 2% yeast extract, 보조탄소원으로 0.115% acetic acid가 함유된 배지에서 BC 생산량이 최대였다. 최적배지에서 생성된 BC의 구조적 특성을 FT-IR 및 XRD를 사용하여 조사한 결과, 생성된 BC는 전형적인 천연 cellulose와 동일한 cellulose I인 것으로 확인되었다. G7 균주를 0.1 mM $AgNO_3$ 가 함유된 최적 배지에서 배양한 결과, 배양액의 색깔이 적갈색으로 변하였으며, 이것은 은 나노입자가 생성되었음을 의미한다. 은 나노입자의 합성유무를 UV-Vis 스펙트럼 분석에 의하여 확인한 바, 425 nm에서 은 나노입자의 고유한 흡수스펙트럼이 관찰되었다. 또한, 생성된 BC를 주사전자현미경으로 관찰한 결과, 표면과 기공에 은 나노입자가 생성되어 있음을 재확인하였다.

1-Decanoic Acid와 Tri-n-octylphosphine을 이용하여 화학적 환원법으로 제조된 은 나노입자의 특성 및 전기적 전도체 적용 (Preparation of Silver Nanoparticles by Chemical Reduction-Protection Method Using 1-Decanoic Acid and Tri-n-octylphosphine, and their Application in Electrically Conductive Silver Nanopaste)

  • 심상보;배동식;한종대
    • 공업화학
    • /
    • 제27권1호
    • /
    • pp.68-73
    • /
    • 2016
  • 1-decanoic acid와 tri-n-octylphosphine을 분산 안정제로서 사용하고, $NaBH_4$를 환원제로 사용하여 화학적 환원법으로 $AgNO_3$ 수용액으로부터 페이스트용 은 나노입자를 제조하였다. 은 나노입자의 생성, 은 나노입자의 형상 및 크기를 XRD, UV-vis, TEM 및 SEM으로 조사하였다. 합성된 은 나노입자로 페이스트를 제조하여 점도를 측정하였으며, PET 막에 코팅하여 제조된 은 박막의 표면저항을 조사하였다. $NaBH_4/AgNO_3$의 몰비는 1 : 5가 최적으로 나타났고, 최적의 몰비에서 10-200 nm의 잘 분산된 구형에 가까운 은 나노입자를 얻을 수 있었다. 최적의 조건에서 얻은 은 나노입자로 PET 막에 코팅하여 제조한 은 박막의 표면저항은 $41{\mu}{\Omega}/cm^2$의 낮은 값을 나타내었다.

유연소자 응용을 위한 은 나노입자의 레이저 소결 (Laser Sintering of Silver Nanoparticle for Flexible Electronics)

  • 지석영;박원태;노용영;장원석
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.135-139
    • /
    • 2015
  • We present a fine patterning method of conductive lines on polyimide (PI) and glass substrates using silver (Ag) nanoparticles based on laser scanning. Controlled laser irradiation can realize selective sintering of conductive ink without damaging the substrate. Thus, this technique easily creates fine patterns on heat-sensitive substrates such as flexible plastics. The selective laser sintering of Ag nanoparticles was managed by optimizing the conditions for the laser scan velocity (1.0-20 mm/s) and power (10-150 mW) in order to achieve a small gap size, high electrical conductivity, and fine roughness. The fabricated electrodes had a minimum channel length of $5{\mu}m$ and conductivity of $4.2{\times}10^5S/cm$ (bulk Ag has a conductivity of $6.3{\times}10^5S/cm$) on the PI substrate. This method was used to successfully fabricate an organic field effect transistor with a poly(3-hexylthiophene) channel.

Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies

  • Cha, Hyeong-Rae;Babu, V. Ramesh;Rao, K.S.V. Krishna;Kim, Yong-Hyun;Mei, Surong;Joo, Woo-Hong;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3191-3195
    • /
    • 2012
  • New silver nanoparticle (AgNP)-loaded amino acid based hydrogels were synthesized successfully from poly (vinyl alcohol) (PVA) and poly(acryl amide-co-acryloyl phenyl alanine) (PAA) by redox polymerization. The formation of AgNP in hydrogels was confirmed by using a UV-Vis spectrophotometer and XRD. The structure and morphology of silver nanocomposite hydrogels were studied by using a scanning electron microscopy (SEM), which demonstrated scattered nanoparticles, ca. 10-20 nm. Thermogravimetric analysis revealed large differences of weight loss (i.e., 48%) between the prestine hydrogel and silver nanocomposite. The antibacterial studies of AgNP-loaded PAA (Ag-PAA) hydrogels was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. These Ag-PAA hydrogels showed significant activities against all the test bacteria. Newly developed hydrogels could be used for medical applications, such as artificial burn dressings.

이산 쌍극자 근사를 이용한 금-은 합금 나노입자의 소광 스펙트럼 계산 (Discrete Dipole Approximation Calculation of the Extinction Spectra of Gold-Silver Alloy Nanoparticles)

  • 이희미;;장준경
    • 대한화학회지
    • /
    • 제51권2호
    • /
    • pp.136-140
    • /
    • 2007
  • 이산 쌍극자 근사를 이용하여 수용액상의 금-은 합금 나노입자의 표면 플라즈몬 공명 스펙트럼을 계산하였다. 직경 10 나노미터의 금-은 합금 입자의 경우에 스펙트럼의 최대 소광 파장이 합금의 은 성분이 높아짐에 따라 선형적으로 짧은 파장대로 이동하며 최대 소광 세기는 지수적으로 증가함을 관측하였다. 이러한 계산결과는 실험 결과들과 잘 일치하는 것을 확인하였다.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권3호
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.