Browse > Article
http://dx.doi.org/10.5012/jkcs.2007.51.2.136

Discrete Dipole Approximation Calculation of the Extinction Spectra of Gold-Silver Alloy Nanoparticles  

Lee, Hee-Mi (Department of Nanomaterials Engineering, Pusan National University)
Chandra, Saha Leton (Department of Nanomaterials Engineering, Pusan National University)
Jang, Joon-Kyung (Department of Nanomaterials Engineering, Pusan National University)
Publication Information
Abstract
By using the discrete-dipole approximation, we computed the extinction spectrum of a gold-silver alloy nanoparticle. We have examined how the surface plasmon resonance changes with respect to the variation in the composition of the alloy particle. As the fraction of silver increases for a 10nm particle, the peak position of the extinction spectrum blue-shifts linearly. The intensity of the peak however increases exponentially with increasing the silver fraction. These results are in accord with the previous experimental results.
Keywords
Surface Plasmon Resonance; Discrete-Dipole Approximation; Gold-Silver Alloy; Extinction Spectrum; Nanoparticles;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Palik, E. D. Handbook of Optical Constants of Solids Academic: New York, 1985
2 Flatau, P. J. Opt. Lett. 1997, 22, 1205   DOI
3 Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in Fortran Cambridge University Press: Cambridge, 1986
4 Hubenthal, F.; Ziegler, T.; Hendrich, C.; Alschinger, M.; Trager, F. Eur. Phys. J. D 2005, 34, 165   DOI
5 Roy, R. K.; Mandal, S. K.; Pal, A. K. Eur. Phys. J. B 2003, 33, 109   DOI
6 Gaudry, M.; Lerme, J.; Cottacin, E.; Pellarin, M.; Vialle, J.-L.; Broyer, M.; Prevel, B.; Treilleux, M.; Melinon, P. Phys. Rev. B 2001, 64, 085407
7 Shi, H.; Zhang, L.; Cai, W. J. Appl. Phys. 2000, 87, 1572   DOI   ScienceOn
8 Moreno, E; Erni, D.; Hafner, C.; Vahldieck, R. J. Opt. Soc. A 2002, 19, 101   DOI   ScienceOn
9 Novotny, L.; Bian, R. X.; Xie, X. S. Phys. Rev. Lett. 1997, 79, 645   DOI   ScienceOn
10 Bian, R. X.; Dunn, R. C.; Xie, X.; Leung, P. T. Phys. Rev. Lett. 1995, 75, 4772   DOI   ScienceOn
11 Hale, G. M.; Querry, M. R. Appl. Opt. 1973, 12, 555   DOI
12 Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327   DOI   ScienceOn
13 Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature (London) 1996, 382, 607   DOI   ScienceOn
14 Sharma, A. K.; Gupta, B. D. Opt. Commun. 2005, 245, 159   DOI   ScienceOn
15 Zhang, X.; Yonzon, C., Van Duyne, P. J. Mat. Res. 2006, 21, 1083   DOI   ScienceOn
16 Sharma, A.; Gupta, B. D. Nanotechnology 2006, 17, 124   DOI   ScienceOn
17 Ehler, T. T.; Neo, L. J. Langmuir 1995, 11, 4177   DOI   ScienceOn
18 Moskovits, M.; Srnova-Sloufova, I.; Vlckova, B. J. Chem. Phys. 2002, 116, 10435
19 Teo, B. K.; Keating, K.; Kao, Y.-H. J. Am. Chem. Soc. 1987, 109, 3494
20 Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3529
21 Boal, A. K.; Ilhan, F.; DeRoucher, J. E.; Thurn-Albrech, T.; Rotello, V. M. Nature (London) 2000, 404, 746
22 Mulvaney, P. Langmuir 1996, 12, 788   DOI   ScienceOn
23 Kreibig, U. J. Phys. F: Metal Phys. 1974, 4, 999   DOI   ScienceOn
24 Hornyak, G. L.; Patrissi, C. J.; Oberhauser, E. B.; Martin, C. R.; Valmalette, J-C; Lemaire, L.; Dutta, J.; Hofmann, H. NanoStructured Materials 1997, 9, 571
25 Chen, D.-H.; Chen, C.-J. J. Mater. Chem. 2002, 12, 1557
26 Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668   DOI   ScienceOn
27 Draine, B. T.; Flatau, P. J. Opt. Soc. Am. A 1994, 11, 1491   DOI   ScienceOn
28 Papavassiliou, G. C. J. Phys. F: Metal Phys. 1976, 6, L103   DOI   ScienceOn