DOI QR코드

DOI QR Code

Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies

  • Cha, Hyeong-Rae (Anastro Laboratory, Department of Chemistry, Changwon National University) ;
  • Babu, V. Ramesh (Anastro Laboratory, Department of Chemistry, Changwon National University) ;
  • Rao, K.S.V. Krishna (Anastro Laboratory, Department of Chemistry, Changwon National University) ;
  • Kim, Yong-Hyun (Anastro Laboratory, Department of Chemistry, Changwon National University) ;
  • Mei, Surong (Anastro Laboratory, Department of Chemistry, Changwon National University) ;
  • Joo, Woo-Hong (Department of Biology, Changwon National University) ;
  • Lee, Yong-Ill (Anastro Laboratory, Department of Chemistry, Changwon National University)
  • Received : 2012.05.07
  • Accepted : 2012.07.02
  • Published : 2012.10.20

Abstract

New silver nanoparticle (AgNP)-loaded amino acid based hydrogels were synthesized successfully from poly (vinyl alcohol) (PVA) and poly(acryl amide-co-acryloyl phenyl alanine) (PAA) by redox polymerization. The formation of AgNP in hydrogels was confirmed by using a UV-Vis spectrophotometer and XRD. The structure and morphology of silver nanocomposite hydrogels were studied by using a scanning electron microscopy (SEM), which demonstrated scattered nanoparticles, ca. 10-20 nm. Thermogravimetric analysis revealed large differences of weight loss (i.e., 48%) between the prestine hydrogel and silver nanocomposite. The antibacterial studies of AgNP-loaded PAA (Ag-PAA) hydrogels was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. These Ag-PAA hydrogels showed significant activities against all the test bacteria. Newly developed hydrogels could be used for medical applications, such as artificial burn dressings.

Keywords

References

  1. Deligkaris, K.; Tadele, T. S.; Olthuis, W. J. Sensor. Actuat. B 2010, 147, 765. https://doi.org/10.1016/j.snb.2010.03.083
  2. Song, F. L.; Zhang, M.; Shi, J. F.; Li, N. N.; Yang, C.; Li, Y. Mater. Sci. Eng. C 2010, 30, 804. https://doi.org/10.1016/j.msec.2010.03.018
  3. Pourjavadi, A.; Hosseinzadeh, H. Bull. Korean Chem. Soc. 2010, 31, 3163. https://doi.org/10.5012/bkcs.2010.31.11.3163
  4. Krebs, M. D.; Jeon, O.; Alsberg, E. J. Am. Chem. Soc. 2009, 131, 9204. https://doi.org/10.1021/ja9037615
  5. Jo, S. Y.; Lim, Y. M.; Youn, M. H.; Gwon, H. J.; Park, J. S.; Nho, Y. C.; Shin, H. Polym.-Korea 2011, 33, 551.
  6. Skardal, A.; Sarker, S. F.; Crabbé, A.; Nickerson, C. A.; Prestwich, G. D. Biomaterials 2010, 31, 8426. https://doi.org/10.1016/j.biomaterials.2010.07.047
  7. Huang, R.; Kostanski, L. K.; Filipe, C. D. M.; Ghosh, R. J. Membrane Sci. 2009, 336, 42 https://doi.org/10.1016/j.memsci.2009.03.002
  8. Hirose, M.; Tachibana, A.; Tanabe, T. Mater. Sci. Eng. C 2010, 30, 664. https://doi.org/10.1016/j.msec.2010.02.020
  9. Rossi, F.; Perale, G.; Storti, G.; Masi, M. J. Appl. Polym. Sci. 2012, 123, 2211. https://doi.org/10.1002/app.34731
  10. Moon, J. R.; Kim, B. S.; Kim, J. H. Bull. Korean Chem. Soc. 2006, 27, 981. https://doi.org/10.5012/bkcs.2006.27.7.981
  11. Yannas, I. V.; Lee, E.; Orgill, D. P. Proc. Natl. Acad. Sci. USA 1989, 86, 933. https://doi.org/10.1073/pnas.86.3.933
  12. Hubbell, J. A. Curr. Opin. Sol. State Mater. Sci 1998, 3, 246. https://doi.org/10.1016/S1359-0286(98)80098-3
  13. Kim, B. S.; Nikolovski, J.; Bonadio, J.; Mooney, D. J. Nature Biotech. 1999, 17, 979. https://doi.org/10.1038/13671
  14. Xia, C.; Xiao, C. J. Appl. Polym. Sci. 2012, 123, 2244. https://doi.org/10.1002/app.34751
  15. Liu, Z.; Liu, J.; Chen, T. Sensor. Actuat. B 2005, 107, 311. https://doi.org/10.1016/j.snb.2004.10.017
  16. Temgire, M. K.; Joshi, S. S. Radiat. Phys. Chem. 2004, 71, 1039. https://doi.org/10.1016/j.radphyschem.2003.10.016
  17. Zhan, W. Z.; Qiao, X. L.; Chen, J. G. J. Colloid Interface Sci. 2006, 302, 370. https://doi.org/10.1016/j.jcis.2006.06.035
  18. Ledo, A.; Martinez, F.; Quintela, M. A. L. J. Phys. B 2007, 398, 273. https://doi.org/10.1016/j.physb.2007.05.010
  19. Brandt, K.; Salikov, V.; Ozcoban, H.; Staron, P.; Schreyer, A.; Prado, L. A. S. A.; Schulte, K.; Heinrich, S.; Schneider, G. A. Composite Sci. Tech. 2011, 72, 65. https://doi.org/10.1016/j.compscitech.2011.10.001
  20. Liang, G. D.; Bao, S. P.; Tjong, S. C. Mater. Sci. Eng. B 2007, 142, 55. https://doi.org/10.1016/j.mseb.2007.06.028
  21. Hong, Y.; Ding, S. J.; Wu, W.; Hu, J. J.; Voevodin, A. A.; Gschwender, L.; Snyder, E.; Chow, L.; Su, M. ACS Appl. Mat. Inter. 2010, 2, 1685. https://doi.org/10.1021/am100204b
  22. Paik, Y.; Poliks, B.; Rusa, C. C.; Tonelli, A. E.; Schaefer, J. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 1271. https://doi.org/10.1002/polb.21112
  23. Zhao, C. J.; Zhao, Q. T.; Zhao, Q. Z. J. Photochem. Photobiol. A 2007, 187, 146. https://doi.org/10.1016/j.jphotochem.2006.10.006
  24. Endo, T.; Ikeda, R.; Yanagida, Y.; Hatsuzawa, T. Anal. Chim. Acta 2008, 611, 205. https://doi.org/10.1016/j.aca.2008.01.078
  25. Zhang, C.; Yang, Q.; Zhan, N.; Sun, L.; Wang, H.; Song, Y.; Li, Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2010, 362, 58. https://doi.org/10.1016/j.colsurfa.2010.03.038
  26. Basri, H.; Ismail, A. F.; Aziz, M.; Nagai, K.; Matsuura, T.; Abdullah, M. S.; Ng, B. C. Desalination 2010, 261, 264. https://doi.org/10.1016/j.desal.2010.05.009
  27. Setua, P.; Chakraborty, A.; Seth, D. Phys. Chem. C 2007, 111, 3901. https://doi.org/10.1021/jp067475i
  28. Khanna, P. K.; Singh, N.; Charan, S.; Viswanath, A. K. Mater. Chem. Phys. 2005, 92, 214. https://doi.org/10.1016/j.matchemphys.2005.01.011
  29. Yilmazer, U.; Ozden, G. Polym. Compos. 2006, 27, 249. https://doi.org/10.1002/pc.20191
  30. Sabelli, H. C. J. Clin. Psychiatry 1991, 52, 137.
  31. Methenitis, C.; Morcellet, J.; Pneumatikakis, G.; Morcellet, M. Macromolecules 1994, 27, 1455. https://doi.org/10.1021/ma00084a027
  32. Barbucci, R.; Casolaro, M.; Magnani, A. Chem. Rev. 1992, 120, 29.
  33. Casolaro, M.; Paccagnini, E.; Mendichi, R.; Ito, Y. Macromolecules 2005, 38, 2460. https://doi.org/10.1021/ma047652i
  34. Murali, M. Y.; Premkumar, T.; Lee, K. J.; Geckeler, K. E. Macromol. Rapid Commun. 2006, 27, 1346. https://doi.org/10.1002/marc.200600297
  35. Mostafavi, M.; Keghouche, N.; Delcourt, M. O.; Belloni, J. Chem. Phys. Lett. 1990, 167, 193. https://doi.org/10.1016/0009-2614(90)85004-V
  36. Gutierrez, M.; Henglein, A. J. Phys. Chem. B 1993, 97, 11368. https://doi.org/10.1021/j100146a003
  37. Leff, D. V.; Brandt, L.; Heath, J. R. Langmuir 1996, 12, 4723. https://doi.org/10.1021/la960445u
  38. Yin, W.; Yanga, H.; Cheng, R. Eur. Phys. J. 2005, E17, 1.

Cited by

  1. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles vol.9, pp.12, 2017, https://doi.org/10.3390/polym9120636
  2. Biodegradable Tragacanth Gum Based Silver Nanocomposite Hydrogels and Their Antibacterial Evaluation pp.1572-8900, 2017, https://doi.org/10.1007/s10924-017-0989-2
  3. Metallogels: Availability, Applicability, and Advanceability pp.09359648, 2019, https://doi.org/10.1002/adma.201806204
  4. Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity vol.3, pp.6, 2012, https://doi.org/10.1016/j.matpr.2016.04.076
  5. Passive cooling performance of polyacrylamide hydrogel on wooden and brick houses and effect of nanoparticle integration on its mechanical strength vol.50, pp.7, 2012, https://doi.org/10.1080/14658011.2021.1898880