DOI QR코드

DOI QR Code

Isolation and Characterization of Bacterial Cellulose-Producing Bacteria for Silver Nanoparticle Synthesis

은 나노입자 합성을 위한 Bacterial Cellulose 생산 세균의 분리 및 특성

  • Yoo, Ji-Yeon (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Jang, Eun-Young (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Son, Yong-Jun (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Park, Soo-Yeun (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University)
  • 유지연 (부산대학교 생명환경화학과/생명산업융합연구원) ;
  • 장은영 (부산대학교 생명환경화학과/생명산업융합연구원) ;
  • 손용준 (부산대학교 생명환경화학과/생명산업융합연구원) ;
  • 박수연 (부산대학교 생명환경화학과/생명산업융합연구원) ;
  • 손홍주 (부산대학교 생명환경화학과/생명산업융합연구원)
  • Received : 2018.02.21
  • Accepted : 2018.03.27
  • Published : 2018.06.28

Abstract

As a basic study for environment-friendly production of bacterial cellulose (BC) dressing with antimicrobial activity, we isolated and identified acetic acid bacteria which are resistant to silver ions and can biosynthesize silver nanoparticles. Furthermore, conditions of BC production by selected strain were also investigated. Strain G7 isolated from decayed grape skin was able to grow in the presence of 0.1 mM $AgNO_3$ which was identified as Acetobacter intermedius based on 16S rRNA gene analysis. BC production was the highest in a medium containing 2% glucose as a carbon source, 2% yeast extract as a nitrogen source, and 0.115% acetic acid as a cosubstrate. Structural properties of BC produced in optimal medium were studied using Fourier-transform infrared spectroscopy and X-ray diffractometer, and it was found that BC produced was cellulose type I that was the same as a typical native cellulose. When strain G7 was cultured in an optimal medium containing 0.1 mM $AgNO_3$, the color of the culture broth turned into reddish brown, indicating that silver nanoparticles were formed. As a result of UV-Vis spectral analysis of the culture, it was found that a unique absorption spectrum of silver nanoparticles at 425 nm was also observed. Scanning electron microscopic observations showed that silver nanoparticles were formed on the surface and pores of BC membrane.

환경친화적으로 항균성이 부여된 상처치료용 BC 드레싱을 개발하기 위한 기초연구로서, 은 이온에 대해 내성이 있으면서 은 나노입자를 생합성할 수 있는 초산균을 분리 및 동정하였다. 나아가 실험균주에 의한 BC 생산 조건을 조사하였다. 부패된 포도껍질로부터 분리된 G7 균주는 0.1 mM $AgNO_3$ 존재 하에서 생육할 수 있었으며, 16S rRNA 유전자의 염기서열 분석에 의거하여 Acetobacter intermdius로 동정되었다. 탄소원으로 2% glucose, 질소원으로 2% yeast extract, 보조탄소원으로 0.115% acetic acid가 함유된 배지에서 BC 생산량이 최대였다. 최적배지에서 생성된 BC의 구조적 특성을 FT-IR 및 XRD를 사용하여 조사한 결과, 생성된 BC는 전형적인 천연 cellulose와 동일한 cellulose I인 것으로 확인되었다. G7 균주를 0.1 mM $AgNO_3$ 가 함유된 최적 배지에서 배양한 결과, 배양액의 색깔이 적갈색으로 변하였으며, 이것은 은 나노입자가 생성되었음을 의미한다. 은 나노입자의 합성유무를 UV-Vis 스펙트럼 분석에 의하여 확인한 바, 425 nm에서 은 나노입자의 고유한 흡수스펙트럼이 관찰되었다. 또한, 생성된 BC를 주사전자현미경으로 관찰한 결과, 표면과 기공에 은 나노입자가 생성되어 있음을 재확인하였다.

Keywords

References

  1. Sutherland IW. 1998. Novel and estabilished applications of microbial polysaccharides. Trends Biotechnol. 16: 41-46. https://doi.org/10.1016/S0167-7799(97)01139-6
  2. Iguchi M, Yamanaka S, Budhiono A. 2000. Bacterial cellulose - a masterpiece of natural's arts. J. Mater. Sci. 35: 261-270. https://doi.org/10.1023/A:1004775229149
  3. Chawla PR, Bajaj IB, Survase SA, Singhal RS. 2009. Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47: 107-124.
  4. Torres FG, Commeaux S, Troncoso OP. 2012. Biocompatibility of bacterial cellulose based biomaterials. J. Funct Biomater. 3: 864-878. https://doi.org/10.3390/jfb3040864
  5. Rajwade JM, Paknikar KM, Kumbhar JV. 2015. Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 99: 2491-2511. https://doi.org/10.1007/s00253-015-6426-3
  6. Sulaeva I, Henniges U, Rosenau T, Potthast A. 2015. Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol. Adv. 33: 1547-1571. https://doi.org/10.1016/j.biotechadv.2015.07.009
  7. Lansdown AB. 2006. Silver in health care: antimicrobial effects and safety in use. Curr. Probl. Dermatol. 33: 17-34.
  8. Rai MK, Deshmukh SD, Ingle AP, Gade AK. 2012. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112: 841-852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
  9. Hebbalalu D, Lalley J, Nadagouda MN, Varma RS. 2013. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustainable Chem. Eng. 1: 703-712. https://doi.org/10.1021/sc4000362
  10. Anthony KJP, Murugan M, Jeyaraj M, Rathinam NK, Sangiliyandi G. 2014. Synthesis of silver nanoparticles using pine mushroom extract: A potential antimicrobial agent against E. coli and B. subtilis. J. Ind. Eng. Chem. 20: 2325-2331. https://doi.org/10.1016/j.jiec.2013.10.008
  11. El-Baz AF, El-Batal AI, Abomosalam FM, Tayel AA, Shetaia YM, Yang S. 2016. Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J. Basic Microbiol. 56: 531-540. https://doi.org/10.1002/jobm.201500503
  12. Ramesh PS, Kokila T, Geetha D. 2015. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim. Acta, Part A. 142: 339-343. https://doi.org/10.1016/j.saa.2015.01.062
  13. Rai M, Ingle AP, Gupta IR, Birla SS, Yadav AP, Abd-Elsalam KA. 2013. Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications. Curr. Nanosci. 9: 576-587. https://doi.org/10.2174/15734137113099990092
  14. Maneerung T, Tokura S, Rujiravanit R. 2008. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 72: 43-51. https://doi.org/10.1016/j.carbpol.2007.07.025
  15. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4: 406-426.
  16. Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G. 2001. Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind. Crops Prod. 13: 193-208. https://doi.org/10.1016/S0926-6690(00)00077-7
  17. Embuscado ME, BeMiller JN, Marks JS. 1996. Isolation and partial characterization of cellulose produced by Acetobacter xylinum. Food Hydrocoll. 10: 75-82. https://doi.org/10.1016/S0268-005X(96)80057-9
  18. Masaoka S, Ohe T, Sakota N. 1993. Production of cellulose from glucose by Acetobacter xylinum, J. Ferment. Bioeng. 75: 18-22. https://doi.org/10.1016/0922-338X(93)90171-4
  19. Toda K, Asakura T, Fukaya M, Entani E, Kawamura Y. 1997. Cellulose production by acetic acid-resistant Acetobacter xylinum, J. Ferment. Bioeng. 84: 228-231. https://doi.org/10.1016/S0922-338X(97)82059-4
  20. Yunoki S, Osada Y, Kono H, Takai M. 2004. Role of ethanol in improvement of bacterial cellulose production: analysis using $^{13}C$-labeled carbon sources. Food Sci. Technol. Res. 10: 307-313. https://doi.org/10.3136/fstr.10.307
  21. Mie G. 1908. Contribution to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys. 25: 377-445.

Cited by

  1. Nitric Oxide-Releasing Bacterial Cellulose/Chitosan Crosslinked Hydrogels for the Treatment of Polymicrobial Wound Infections vol.14, pp.1, 2018, https://doi.org/10.3390/pharmaceutics14010022