Browse > Article
http://dx.doi.org/10.7735/ksmte.2015.24.1.135

Laser Sintering of Silver Nanoparticle for Flexible Electronics  

Jia, Seok Young (Department of Nanomechatronics, University of Science and Technology)
Park, Won Tea (Department of Energy and Materials Engineering, Dongguk University)
Noh, Yong-Young (Department of Energy and Materials Engineering, Dongguk University)
Chang, Won Seok (Department of Nanomechatronics, University of Science and Technology)
Publication Information
Journal of the Korean Society of Manufacturing Technology Engineers / v.24, no.1, 2015 , pp. 135-139 More about this Journal
Abstract
We present a fine patterning method of conductive lines on polyimide (PI) and glass substrates using silver (Ag) nanoparticles based on laser scanning. Controlled laser irradiation can realize selective sintering of conductive ink without damaging the substrate. Thus, this technique easily creates fine patterns on heat-sensitive substrates such as flexible plastics. The selective laser sintering of Ag nanoparticles was managed by optimizing the conditions for the laser scan velocity (1.0-20 mm/s) and power (10-150 mW) in order to achieve a small gap size, high electrical conductivity, and fine roughness. The fabricated electrodes had a minimum channel length of $5{\mu}m$ and conductivity of $4.2{\times}10^5S/cm$ (bulk Ag has a conductivity of $6.3{\times}10^5S/cm$) on the PI substrate. This method was used to successfully fabricate an organic field effect transistor with a poly(3-hexylthiophene) channel.
Keywords
Laser sintering; Organic field effect transistor (OFET); Ag nanoparticle ink; Flexible electronics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nam, S. H., Kim, J. Y., Lee, H. N., Kim, H. J., Ha, C. S., Kim, Y. K., 2012, Doping Effect of Organosulfonic Acid in Poly(3-Hexylthiophene) Films for Organic Field-effect Transistors, ACS Appl. Mater. Interfaces., 4:3 1281-1288.   DOI   ScienceOn
2 Jun, J., 2013, The Trend of Organic Semiconductor Device and Development of Circuit, KIDS, 14:2 32-36.
3 Takao, S., Tsuyoshi, S., Shingo, I., Yusaku, K., Hiroshi, K., Takayasu, S., 2004, A Large-area, Flexible Pressure Sensor Matrix with Organic Field-effect Transistors for Artificial Skin Applications, PNAS, 101:27 9966-9970.   DOI   ScienceOn
4 Liviu, M. D., Kyriaki, M., Maria, M., Gerardo, P., Luisa, T., 2014, Low-Voltage Solid Electrolyte-gated OFETs for Gas Sensing Applications, Microelectron J., 45:12 1679-1683.   DOI   ScienceOn
5 Qing, C., John, A. R., 2008, Random Networks and Aligned Arrays of Single-walled Carbon Nanotubes for Electronic Device Applications, Nano Res., 1:4 259-272.   DOI
6 Stephen, R. F., 2004, The Path to Ubiquitous and Low-cost Organic Electronic Appliances on Plastic, Nature, 428:6986 911-918.   DOI   ScienceOn
7 Castro, H. F., Sowade, E., Rocha, J. G., Alpuim, P., Lanceros-mendez, S., Baumann, R. R., 2008, All-inkjet-printed Bottom-gate Thin-film Transistors Using UV Curable Dielectric for Well-defined Sourcedrain Electrodes, J. Electron. Master., 43:7 2631-2636.
8 Han, M. G., Sperry, J., Gupta, A., Huebner, C. F., Ingram, S. T., Foulger, S. H., 2007, Polyaniline Coated Poly(Butyl Methacrylate) Core-Shell Particles: Roll-to-Roll Printing of Templated Electrically Conductive Structures, J. Mater. Chem., 17:14 1347-1352.   DOI   ScienceOn
9 Seung, H. K., Heng, P., Coastas, P. G., Jean M. J. F., Christine K. L., Dimos, P., 2008, Lithography-free High-resolution Organic Transistor Arrays on Polymer Substrate by Low Energy Selective Laser Ablation of Inkjet-printed Nanoparticle Film, Appl. Phys. A Mater. Sci. Process., 92:3 579-587.   DOI
10 Seung, H. K., Heng, P., Coastas, P. G., Christine. K. L., Jean. M. J. F., Dimos. P., Baumann, R. R., 2007, Air Stable High Resolution Organic Transistors by Selective Laser Sintering of Ink-jet Printed Metal Nanoparticles, Appl. Phys. Lett., 90:14 141103.   DOI   ScienceOn
11 Michael, Z., Oleg, E., Amir, S., Zvi, K., 2014, Laser Sintering of Copper Nanoparticles, J. Phys. D: Appl. Phys., 47:2 025501.   DOI
12 Sung, J. Y., Lee, E. K., 2008, Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process, KSMTE, 17:2 45-50.