• Title/Summary/Keyword: silicon-on-quartz

Search Result 55, Processing Time 0.032 seconds

Optimization of Fused Quartz Cantilever DRIE Process and Study on Q-factors (비정질 수정 캔틸레버의 식각 공정 최적화 및 Q-factor 연구)

  • Song, Eun-Seok;Kim, Yong-Kweon;Baek, Chang-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.362-369
    • /
    • 2011
  • In this paper, optimal deep reactive ion etching (DRIE) process conditions for fused quartz were experimentally determined by Taguchi method, and fused quartz-based micro cantilevers were fabricated. In addition, comparative study on Q-factors of fused quartz and silicon micro cantilevers was performed. Using a silicon layer as an etch mask for fused quartz DRIE process, different 9 flow rate conditions of $C_4F_8$, $O_2$ and He gases were tested and the optimum combination of these factors was estimated. Micro cantilevers based on fused quartz were fabricated from this optimal DRIE condition. Through conventional silicon DRIE process, single-crystalline silicon micro cantilevers whose dimensions were similar to those of quartz cantilevers were also fabricated. Mechanical Q-factors were calculated to compare intrinsic damping properties of those two materials. Resonant frequencies and Q-factors were measured for the cantilevers having fixed widths and thicknesses and different lengths. The Q-factors were in a range of 64,000 - 108,000 for fused quartz cantilevers and 31,000 - 35,000 for silicon cantilevers. The experimental results supported that fused quartz had a good intrinsic damping property compared to that of single crystalline silicon.

A study on bonding characteristics of SoQ bonding according to surface treatment process conditions (표면처리 공정 조건에 따른 SoQ 접합의 접합 특성에 관한 연구)

  • Kim, Jong-Wan;Song, Eun-Seok;Kim, Yong-Kweon;Baek, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1501_1502
    • /
    • 2009
  • Plasma treatment time was optimized to maximize the bonding strength between silicon and quartz. Bonding strength between the silicon and quartz is related to a surface energy which can be calculated by contact angle measurement. It was found that optimized time to get maximized surface energy was 15 sec. Silicon and quartz wafers were treated with $O_2$ plasma under different time splits and then bonded together. Bonding strength of the bonded wafers was measured by shear test. It was verified that the highest bonding strength was obtained when the silicon and quartz wafers were treated for 15 seconds. The maximum bonding strength exceeded the fracture strength of silicon.

  • PDF

A comparative study on Q-factors of fused quartz and silicon micro cantilevers (비정질 수정과 실리콘 마이크로 캔틸레버 구조물의 Q-factor 비교 연구)

  • Song, Eun-Seok;Kim, Yong-Kweon;Baek, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1505_1506
    • /
    • 2009
  • In this paper, micro cantilevers which are made of two different materials - fused quartz and single crystalline silicon - and have similar dimensions were fabricated and their mechanical Q-factors were evaluated to compare intrinsic damping properties of those two materials. Resonant frequencies and Q-factors were measured for the cantilevers having fixed widths and thicknesses, and different lengths. The measured Q-values are in a range of 64,000 - 108,000 for fused quartz cantilevers, and 31,000 - 35,000 for silicon cantilevers, respectively. Experimental results support high Q-factors of fused quartz compared to single crystalline silicon due to its good intrinsic damping properties.

  • PDF

Single-Crystal Silicon Thin-Film Transistor on Transparent Substrates

  • Wong, Man;Shi, Xuejie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1103-1107
    • /
    • 2005
  • Single-crystal silicon thin films on glass (SOG) and on fused-quartz (SOQ) were prepared using wafer bonding and hydrogen-induced layer transfer. Thinfilm transistors (TFTs) were subsequently fabricated. The high-temperature processed SOQ TFTs show better device performance than the low-temperature processed SOG TFTs. Tensile and compressive strain was measured respectively on SOQ and SOG. Consistent with the tensile strain, enhanced electron effective mobility was measured on the SOQ TFTs.

  • PDF

Interpretation of the Asymmetric Color and Shape of Brownish Ring in Quartz Crucible

  • Jung, YoonSung;Choi, Jae Ho;Min, Kyung Won;Byun, Young Min;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.50-52
    • /
    • 2022
  • Brownish rings (BRs) with white interiors are formed during the manufacture of silicon ingots in quartz glass crucibles. These BRs inhibit the yield of silicon ingots. However, the composition and mechanism of the formation of these BRs remain unclear thus far. Therefore, in this study, we analyzed the color and shape of these BRs. Raman analysis revealed that the brown and white colors appear owing to oxygen deficiency rather than crystallization from excess oxygen supply as previously assumed. Moreover, the dark shade of the brown areas depends on the degree of oxygen deficiency and the asymmetrical width of the brown areas is attributed to the direction of the molten silicon flow, which is influenced by the rotation and heat of the ingot crucible.

Package-Platformed Linear/Circular Polarization Reconfigurable Antenna Using an Integrated Silicon RF MEMS Switch

  • Hyeon, Ik-Jae;Jung, Tony J.;Lim, Sung-Joon;Baek, Chang-Wook
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.802-805
    • /
    • 2011
  • This letter presents a K-band polarization reconfigurable antenna integrated with a silicon radio frequency MEMS switch into the form of a compact package. The proposed antenna can change its state from linear polarization (LP) to circular polarization (CP) by actuating the MEMS switch, which controls the configuration of the coupling ring slot. Low-loss quartz is used for a radiating patch substrate and at the same time for a packaging lid by stacking it onto the MEMS substrate, which can increase the system integrity. The fabricated antenna shows broadband impedance matching and exhibits high axial ratios better than 15 dB in the LP and small axial ratios in the CP, with a minimum value of 0.002 dB at 20.8 GHz in the K-band.

Solution growth of polycrystalline silicon on Al-Si coated borosilicate and quartz glass substrates for low cost solar cell application (저가태양전지에 응용을 위한 용액성장법에 의한 Al-Si층이 코팅된 유리기판상의 다결정 실리콘 박막성장에 관한 연구)

  • Lee, S.H.;Queisser, H.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.238-244
    • /
    • 1994
  • We investigated solution growth of silicon on borosilicate and quartz glass substrates in the temperature range of $800^{\circ}C~520^{\circ}C$. A thin Al-Si layer evaporated onto the substrate serves to improve the wetting between the substrate and the Al/Ga solvent. Nucleation takes place by a reaction of Al with $SiO_2$ from the substrate. We obtained silicon deposits with a grain size up to a few 100 $\mu\textrm{m}$. There was a perferential (111) orientation for the case of quartz glass substrates while there is a strong contribution of other orientations for the deposition of Si on borosilicate glass substrates.

  • PDF

Fabrication of Boron-Doped Polycrystalline Silicon Films for the Pressure Sensor Application (압력센서용 Boron이 첨가된 다결정 Silicom 박막의 제조)

  • 유광수;신광선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 1993
  • The boron-doped polycrystalline silicon films which can be used in pressure sensors were fabricated in a high-vacuum resistance heating evaporator. Poly-Si films were deposited on quartz substrates at various temperatures and the boron was doped to the silicon film in a diffusion furnace using BN wafer. The silicon films deposited at $500^{\circ}C$ was amorphous, began to show crystalline at $600^{\circ}C$, and became polycrystalline at $700^{\circ}C$. After doping boron at $900^{\circ}C$for 10 minutes, the resistivity of the films was in the range of $0.1{\Omega}cm~1.5{\Omega}cm$, the boron density was $9.4\times10^{15}~2.1\times{10}^{17}cm^{-3}$, and the grain size was $107{\AA}~191{\AA}$.

  • PDF

A study on th reaction between silicon in melt and carbon (용융상태에서의 silicon과 carbon의 반응에 관한 연구)

  • M.J. Lee;B.J. Kim;S.M. Kang;J.K. Choi;B.S. Jeon;Keun Ho Orr
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.336-346
    • /
    • 1994
  • We studied the reaction between silicon and carbon. Silicon granules and silicon with 0.2 wt% carbon powders were prepared for sample and then they were heated up to the $1450^{\circ}C, 1550^{\circ}C, 1650^{\circ}C, 1700^{\circ}C$ and were dwelled 1 hr and 4 hrs, respectively. we studied the change of morphologies of molten silicon and the formation of SiC following the reaction withcarbon using optical microscope, SEM, and XRD. Above the melting point of silicon, oxygens are precipitated during the decomposition of quartz used crucible. SiO formed from the reaction between molten silicon and precipitated oxygen evaporated and made the surface defects. SiC were formed with the reaction between the unreacted carbon and molten silicon. Polytype of the SiC formed at the solidification interface was ${\alpha}-SiC$.

  • PDF

Quartz Dissolution by Irradiated Bacillus Subtilis (방사선을 조사(照射)한 Bacillus Subtilis에 의한 석영 용해)

  • Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.335-342
    • /
    • 2009
  • The effects of bacterial lysis on the rate of quartz dissolution were investigated under pH 7 condition using Bacillus subtilis cells which were either irradiated or non-irradiated with gamma ray. The amount of dissolved organic carbon (DOC) which resulted from bacterial lysis increased in slurries of quartz and bacteria mixture over experimental period. Lysis of non-irradiated bacteria led to the elevated concentration of dissolved silicon when compared with abiotic control. Concomitant increase in the amounts of DOC and dissolved silicon over time indicated that lixiviation of silicon from quartz was due to bacterial lysis. Higher amounts of DOC and dissolved silicon were present in the irradiated bacterial slurries than those of non-irradiated bacteria. The enhancement of quartz dissolution in the irradiated bacterial slurries was likely attributed to disruption of organic molecules in the bacterial cells by gamma ray and formation of effective ligands for quartz dissolution. The results suggest that the effects of bacterial lysis on mineral weathering rate should be considered for prediction of time for released radionuclides to migrate to surface biosphere in high level radioactive waste disposal site.