Quartz Dissolution by Irradiated Bacillus Subtilis

방사선을 조사(照射)한 Bacillus Subtilis에 의한 석영 용해

  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
  • 이종운 (전남대학교 공과대학 에너지자원공학과)
  • Published : 2009.08.28

Abstract

The effects of bacterial lysis on the rate of quartz dissolution were investigated under pH 7 condition using Bacillus subtilis cells which were either irradiated or non-irradiated with gamma ray. The amount of dissolved organic carbon (DOC) which resulted from bacterial lysis increased in slurries of quartz and bacteria mixture over experimental period. Lysis of non-irradiated bacteria led to the elevated concentration of dissolved silicon when compared with abiotic control. Concomitant increase in the amounts of DOC and dissolved silicon over time indicated that lixiviation of silicon from quartz was due to bacterial lysis. Higher amounts of DOC and dissolved silicon were present in the irradiated bacterial slurries than those of non-irradiated bacteria. The enhancement of quartz dissolution in the irradiated bacterial slurries was likely attributed to disruption of organic molecules in the bacterial cells by gamma ray and formation of effective ligands for quartz dissolution. The results suggest that the effects of bacterial lysis on mineral weathering rate should be considered for prediction of time for released radionuclides to migrate to surface biosphere in high level radioactive waste disposal site.

감마선을 조사(照射)하거나 조사하지 않은 두 경우의 Bacillus Subtilis를 대상으로 하여 박테리아 세포 붕괴(lysis)를 유도한 후 방출된 유기 분자가 pH 7 조건에서 석영 용해 속도에 미치는 영향을 조사하였다. 시간이 경과하며 석영과 박테리아 혼합 슬러리에서 용존 유기탄소(dissolved organic carbon; DOC) 함량이 증가하였으며 이는 박테리아 투입량과 대체적으로 비례하는 것으로 보아 박테리아 세포 붕괴의 결과인 것으로 판단되었다. 방사선을 조사하지 않은 박테리아를 투입하였을 경우, 시간이 경과하며 박테리아를 투입하지 않은 화학적 비교 슬러리에 비해 높은 함량의 규소가 용출되어 나왔다. DOC 함량과 용해되어 나온 규소 함량간에 나타난 좋은 상관관계는 규소 용출의 원인이 박테리아 세포 붕괴에 의해 방출된 DOC에서 비롯되었음을 나타낸다. 한편 방사선을 조사한 박테리아의 세포 붕괴 산물은 방사선을 조사하지 않은 경우에 비하여 단위 DOC 함량당 매우 높은 농도의 규소를 용출시켰다. 이 때 관찰되는 규소 용출은 방사선이 조사되었을 때 교란된 박테리아 내부의 유기 분자가 방사선을 조사하지 않은 박테리아에 비하여 석영을 보다 효과적으로 용해할 수 있는 유기 분자로 변화하였기 때문으로 판단된다. 이 결과는 고준위 방사성 폐기물 처 분장에서 누출된 핵종이 지표 생태계에 도달하는데 소요되는 시간을 예측할 때 처분장 주변 대수층 암석의 풍화 속도 촉진에 미치는 박테리아 세포 붕괴의 영향을 고려해야 함을 나타낸다.

Keywords

References

  1. Barker, W.W., Welch, S.A. and Banfield, J.F. (1997) Biogeochemical weathering of silicate minerals. In Banfield, J.F. and Nealson, K.H. (eds.) Geomicrobioloy: Interactions between microbes and minerals. Min eralogical Society of America, Washington, D.C., p. 391-428
  2. Bennett, P.C., Hiebert, F.K. and Choi, W.J. (1996) Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater. Chem. Geol., v. 132, p. 45-53 https://doi.org/10.1016/S0009-2541(96)00040-X
  3. Beveridge, T.J. and Murray, R.G.E. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol., v. 141, p. 876-887
  4. Carlson, A.B. and Banks, C.V. (1952) Spectrophotometric determination of silicon in the presence of zirconium, beryllium, aluminum, and calcium. Anal. Chem., v. 24, p. 472-477 https://doi.org/10.1021/ac60063a010
  5. Chowdhury, T.R., Basu, G.K., Mandal, D.K., Biswas, B.K., Samanta, G., Chowdhury, U.K., Chanda, C.R., Lodh, D., Roy, S.L., Saha, K.C., Roy, S., Kabir, S., Quamruzzaman, Q. and Chakraborti, D. (1999) Arsenic poisoning in the Ganges delta. Nature, v. 401, p. 545-546 https://doi.org/10.1038/44056
  6. Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K. and Chakraborti, D. (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Hlth., v. 18, p. 5-16 https://doi.org/10.1007/BF01757214
  7. EESC (2004) Press release: February plenary session - EESC to debate future of nuclear power in EU. European Economic and Social Committee, EU
  8. EPRI (2009) http://www.epri.com (accessed in 2009.08.09). Electric Power Research Institute, USA
  9. Fein, J.B., Daughney, C.J., Yee, N. and Davis, T. (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta, v. 61, p. 3319-3328 https://doi.org/10.1016/S0016-7037(97)00166-X
  10. Harvey, C.F., Swartz, C.H., Badruzzaman, A.B., Keon-Blute, N., Yu, W., Ali, M.A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P.M., Ashfaque, K.N., Islam, S., Hemond, H.F. and Ahmed, M.F. (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science, v. 298, p. 1602-1606 https://doi.org/10.1126/science.1076978
  11. Itai, T., Masuda, H., Seddique, A.A., Mitamura, M., Maruoka, T., Li, X., Kusakabe, M., Dipak, B.K., Farooqi, A., Yamanaka, T., Nakaya, S., Matsuda, J. and Ahmed, K.M. (2008) Hydrological and geochemical constraints on the mechanism of formation of arsenic contaminated groundwater in Sonargaon, Bangladesh. Appl. Geochem., v. 23, p. 3155-3176 https://doi.org/10.1016/j.apgeochem.2008.06.017
  12. JoongAng Ilbo (2008) Article in 2008.01.24
  13. KNEF (2009) http://www.knef.or.kr (accessed in 2009. 08.09). Korea Nuclear Energy Foundation
  14. Krauskopf, K.B. (1988) Radioactive waste disposal and geology. Chapman and Hall, p. 145
  15. Lee, J.-U. and Chon, H.-T. (2000) Bacterial effects on geochemical behavior of element: An overview on recent geomicrobiological issues. Econ. Environ. Geol., v. 33, p. 353-365. (in Korean)
  16. Lee, J.-U. and Fein, J.B. (2000) Experimental study of the effects of Bacillus subtilis on gibbsite dissolution rates under near-neutral pH and nutrient-poor conditions. Chem. Geol., v. 166, p. 193-202 https://doi.org/10.1016/S0009-2541(99)00191-6
  17. Mailloux, B.J., Alexandrova, E., Keimowitz, A.R., Wovkulich, K., Freyer, G.A., Herron, M., Stolz, J.F., Kenna, T.C., Pichler, T., Polizzotto, M.L., Dong, H., Bishop, M. and Knappett, P.S.K. (2009) Microbial mineral weathering for nutrient acquisition releases arsenic. Appl. Environ. Microbiol., v. 75, p. 2558-2565 https://doi.org/10.1128/AEM.02440-07
  18. Malasarn, D., Saltikov, C.W., Campbell, K.M., Santini, J.M., Hering, J.G. and Newman, D.K. (2004) arrA is a reliable marker for As(V) respiration. Science, v. 306, p. 455 https://doi.org/10.1126/science.1102374
  19. McArthur, J.M., Ravencroft, P., Safiullah, S. and Thirlwall, M.F. (2001) Arsenic in groundwater: Testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resour. Res., v. 37, p. 109-117 https://doi.org/10.1029/2000WR900270
  20. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P. and Rahman, M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v. 395, p. 338 https://doi.org/10.1038/26387
  21. Polizzotto, M., Harvey, C., Sutton, S. and Fendorf, S. (2005) Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc. Natl. Acad. Sci. USA, v. 102, p. 18819-18823 https://doi.org/10.1073/pnas.0509539103
  22. Rogers, J. R. and Bennett, P.C. (2004) Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem. Geol., v. 203, p. 91-108 https://doi.org/10.1016/j.chemgeo.2003.09.001
  23. Seddique, A.A., Masuda, H., Mitamura, M., Shinoda, K., Yamanaka, T., Itai, T., Maruoka, T., Uesugi, K., Ahmed, K.M. and Biswas, D.K. (2008) Arsenic release from biotite into a Holocene groundwater aquifer in Bangladesh. Appl. Geochem., v. 23, p. 2236- 2248 https://doi.org/10.1016/j.apgeochem.2008.03.007
  24. Ullman, W.J., Kirchman, D.L., Welch, S.A. and Vandevivere, P. (1996) Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem. Geol., v. 132, p. 11-17 https://doi.org/10.1016/S0009-2541(96)00036-8
  25. Urrutia, M.M., Kemper, M., Doyle, R. and Beveridge, T.J. (1992) The membrane-induced proton motive force influences that metal binding ability of Bacillus subtilis cell walls. Appl. Environ. Microbiol., v. 58, p. 3837-3844
  26. Welch, S.A. and Ullman, W.J. (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim. Cosmochim. Acta, v. 57, p. 2725-2736 https://doi.org/10.1016/0016-7037(93)90386-B
  27. Welch, S.A. and Vandevivere, P. (1994) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiol. J., v. 12, p. 227-238 https://doi.org/10.1080/01490459409377991
  28. Zobrist, J., Dowdle, P.R., Davis, J.A. and Oremland, R.S. (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol., v. 34, p. 4747-4753 https://doi.org/10.1021/es001068h