• 제목/요약/키워드: silicon oxide

검색결과 1,167건 처리시간 0.057초

다양한 산성 용액에 따른 AZO (Al doped ZnO) 박막의 식각 변화 연구

  • 정원석;남상훈;조상진;양희수;박형식;이준신;부진효
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.240-240
    • /
    • 2011
  • 투명전도성 산화물 박막은 넓은 밴드갭을 가지고 있으며 금속 도핑에 따라서 낮은 저항과 높은 투과도를 가지고 있다. 이러한 투명전도성 산화물 박막은 광학 디바이스, 유기광전자 디바이스(OLED) 및 태양전지 등 다양한 분야에 응용이 되고 있다. 또한 이러한 투명전도성 산화물 박막중에서도 AZO 박막은 실리콘 태양전지의 전극으로 사용이 되며, 이를 식각하여 다양한 모양을 가지는 박막으로 성장시킬 경우 빛의 산란 및 포집 효과에 의해서 태양전지의 current density를 증가시키는 요인이 된다. 본 연구에서는 AZO 박막을 RF magnetron sputtering법을 이용하여 유리 기판위에 성장하였다. 또한, 성장된 AZO 박막은 염산, 질산, 황산, 인산, 초산 등의 다양한 산성용액을 이용하여 식각을 하였다. 그 결과 식각률은 식각용액의 농도 및 pH에 따라서 다양한 변화를 보였으며, 식각된 AZO 박막은 실리콘 태양전지에 응용이 가능할 것으로 기대된다.

  • PDF

젖음성 차이와 무전해도금을 이용한 연성 구리 회로패턴 형성 (Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating)

  • 박상진;고태준;윤주일;문명운;한준현
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.622-629
    • /
    • 2015
  • Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.

High-Quality Graphene Films Synthesized by Inductively-Coupled Plasma-Enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Park, Nam-Kuy;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Graphene has recently attracted significant attention because of its unique optical and electrical properties. For practical device applications, special attention has to be paid to the synthesis of high-quality graphene on large-area substrates. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on Ni or Cu substrates. Among these techniques, CVD is superior to the others from the perspective of technological applications because of its possibility to produce a large size graphene. PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures, such as carbon nanotubes and nanosheets. Compared with thermal CVD, PECVD possesses a unique advantage of additional high-density reactive gas atoms and radicals, facilitating low-temperature, rapid, and controllable synthesis. In the current study, we report results in synthesizing of high-quality graphene films on a Ni films at low temperature. Controllable synthesis of quality graphene on Cu foil through inductively-coupled plasma CVD (ICPCVD), in which the surface chemistry is significantly different from that of conventional thermal CVD, was also discussed.

  • PDF

Dependence of Dielectric Layer and Electrolyte on the Driving Performance of Electrowetting-Based Liquid Lens

  • Lee, June-Kyoo;Park, Kyung-Woo;Kim, Hak-Rin;Kong, Seong-Ho
    • Journal of Information Display
    • /
    • 제11권2호
    • /
    • pp.84-90
    • /
    • 2010
  • This paper presents the effects of a dielectric layer and an electrolyte on the driving performance of an electrowetting on dielectric (EWOD)-based liquid lens. The range of tunable focal length of the EWOD-based liquid lens was highly dependent on the conditions of the dielectric layer, which included an inorganic oxide layer and an organic hydrophobic layer. Moreover, experiments on the physical and optical durability of electrolyte by varying temperature conditions, were conducted and their results were discussed. Finally, the lens with a truncated-pyramid silicon cavity having a sidewall dielectrics and electrode was fabricated by anisotropic etching and other micro-electromechanical systems (MEMS) technologies in order to demonstrate its performance. The lens with $0.6-{\mu}m$-thick $SiO_2$ layer and 10 wt% LiCl-electrolyte exhibited brilliant focal-length tunability from infinity to 3.19 mm.

Polycrystalline Ceramic Fibers by Extrusion

  • Sagesser, Peter;Wegmann, Markus;Gut, Beat;Berroth, Karl;,
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.382-386
    • /
    • 1998
  • titanate and a silicon carbide/zirconium diboride particulate composite have each been blended with thermoplastic of aqueous binders and extruded. The green extrudates have diameters ranging between 50 and 150 ㎛ and polyethylene-base 150 ${\mu}m$ diameter fibers can be drawn down at elevated temperature to approximately 40 ${\mu}m$ diameter. Hollow fibers with 150${\mu}m$ outer and 90 ${\mu}m$ inner diameter can also be fabricated. Green fibers have been processed into chopped fiber felts for use as gas distributors/current collectors in an experimental solid oxide fuel cell (SOFC) and the first attempts at producing simple textile structures have been successful. The fibers, tubes and felts have been successfully debound and sintered and characterization of the sintered PSZ fibers, for example, has revealed a density in excess of 99% and tensile failure stresses up to 1.0 GPa for 78 ${\mu}m$ diameter fibers.

  • PDF

HMDS 단일 전구체를 이용한 다결정 3C-SiC 박막 성장 (Growth of Polycrystalline 3C-SiC Thin Films using HMDS Single Precursor)

  • 정귀상;김강산;한기봉
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.156-161
    • /
    • 2007
  • This paper describes the characteristics of polycrystalline ${\beta}$ or 3C (cubic)-SiC (silicon carbide) thin films heteroepitaxailly grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC film was deposited by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane: $Si_{2}(CH_{3}_{6})$ single precursor. The deposition was performed under various conditions to determine the optimized growth conditions. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_{2}$ were measured by SEM (scanning electron microscope). Finally, depth profiling was invesigated by GDS (glow discharge spectrometer) for component ratios analysis of Si and C according to the grown 3C-SiC film thickness. From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therfore, the poly 3C-SiC thin film is suitable for extreme environment, Bio and RF MEMS applications in conjunction with Si micromaching.

$RuO_2$를 마스크 층으로 TMAH에 의한 이방성 실리콘 식각 (Anisotropic Silicon Etching Using $RuO_2$ Thin Film as a Mask Layer by TMAH Solution)

  • 이재복;오세훈;홍경일;최덕균
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1021-1026
    • /
    • 1997
  • RuO2 thin film has reasonably good conductivity and stiffness and it is thought to substitute for the cantilever beam made up of Pt and Si3N4 double layers in microactuators. Therefore, anisotopic Si etching was performed using RuO2 thin film as a mask layer in 25 wt. % TMAH water solution. In the etching temperature ranging from 6$0^{\circ}C$ to 75$^{\circ}C$, the etch rates of all the crystallographic directions increased linearly as the etching temperature increased. The etch rate ratio(selectivity) of [111]/[100] which varied from 0.08 to 0.14, was not sensitive to temperature. The activation energies for [110] direction, [100] direction and [111] direction were 0.50, 0.66 and 1.04eV, respectively. RuO2 cantilever beam with a clean surface was formed at the etching temperatures of 6$0^{\circ}C$ and $65^{\circ}C$. But the damages due to formation of pin holes on RuO2 surface were observed beyond 7$0^{\circ}C$. The tensile stress of RuO2 thin films caused the cantilever bending upward. As a result, it was demonstrated that the formation of conducting oxide RuO2 cantilever beam which can replace the role of an electrode and supporting layer could be possible by TMAH solution.

  • PDF

복합레진의 광택 및 표면조도에 관한 연구 (A STUDY ON THE GLOSS AND ROUGHNESS OF THE COMPOSITE RESIN)

  • 조승주;이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제15권1호
    • /
    • pp.67-80
    • /
    • 1990
  • This study was performed for elucidating the effects on surface polishing of composite resins. In this study, Silux(microfilled), Graft(hybrid), Bisfil- I (hybrid posterior) and Hi-pol(conventional) were used. Sixty specimens were made with 4 brands of composite resins and Optilux system in $2.0{\times}1.3{\times}1.0cm$ resin block which has a cavity with 0.5cm diameter and 0.5cm depth. Polishing was done with #600 sand paper and Soflex, Super-snap, Micron finishing system, or Composite polishing kit. Final polished surfaces were measured by roughness tester(Kasaka Lab. Ltd., Japan) and image analyser(Omnimet Image Analyser, Buehler, USA). The results were as follows, 1. The celluloid strip produced the smoothest surfaces. 2. Light curing microfilled composite resin, Silux, had smoother surface than any others. 3. The surfaces polished by Soflex were smoothest. 4. Aluminum oxide disk, Soflex and Super-Snap, made smoother surface than diamond bur, M.F.S., or silicon point, Composite polishing kit. 5. The roughness values of surface polished by M.F.S. composed of diamond burs, were less than those of Composite polishing kit made from silicone points.

  • PDF

Device Characteristics and Hot Carrier Lifetime Characteristics Shift Analysis by Carbon Implant used for Vth Adjustment

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.288-292
    • /
    • 2013
  • In this paper, a carbon implant is investigated in detail from the perspectives of performance advantages and side effects for the thick n-type metal-oxide-semiconductor field-effect transistor (n-MOSFET). Threshold voltage ($V_{th}$) adjustment using a carbon implant significantly improves the $V_{th}$ mismatch performance in a thick (3.3-V) n-MOS transistor. It has been reported that a bad mismatch occurs particularly in the case of 0.11-${\mu}m$ $V_{th}$ node technology. This paper investigates a carbon implant process as a promising candidate for the optimal $V_{th}$ roll-off curve. The carbon implant makes the $V_{th}$ roll-off curve perfectly flat, which is explained in detail. Further, the mechanism of hot carrier injection lifetime degradation by the carbon implant is investigated, and new process integration involving the addition of a nitrogen implant in the lightly doped drain process is offered as its solution. This paper presents the critical side effects, such as Isub increases and device performance shifts caused by the carbon implant and suggests an efficient method to avoid these issues.

CVD 에 의한 탄소나노튜브의 구조 및 성장에 대한 촉매금속의 영향 (Catalyst effect on the structure and growth of carbon nanotube by chemical vapor deposition)

  • 손권희;이태재;류승철;최성헌;이철진;유재은;김성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1628-1630
    • /
    • 2000
  • Vertically aligned multiwalled carbon nanotubes are grown on silicon oxide substrate at 950$^{\circ}C$ by thermal chemical vapor deposition using $C_{2}H_2$. Three catalytic metals such as iron(Fe), cobalt (Co), and nickel(Ni) are used as catalyst, we found that the growth rate of carbon nanotubes for three catalyst particles are in an order of Fe > Ni > Co. All carbon nanotubes are revealed to have bamboo structure with no encapsulated catalytic particles, the diameter of carbon nanotubes depend on the catalyst, the tip and the compartment sheets of bamboo structure also depend on the shape of catalytic particles.

  • PDF