Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.11.622

Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating  

Park, Sang-Jin (Department of Materials Science and Engineering, Chungnam National University)
Ko, Tae-Jun (Computational Science Research Center, Korea Institute of Science and Technology)
Yoon, Juil (Department of Mechanical System Engineering, Hansung University)
Moon, Myoung-Woon (Computational Science Research Center, Korea Institute of Science and Technology)
Han, Jun Hyun (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.25, no.11, 2015 , pp. 622-629 More about this Journal
Abstract
Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.
Keywords
flexible substrate; Cu circuit; wettability; electroless plating; nanostructure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. C. Kim, S. K. Rha and Y. S. Lee, Korean J. Mater. Res., 24, 632 (2014).   DOI
2 Y. R. Cho, Y. S. Lee and S. K. Rha, Korean J. Mater. Res., 23, 661 (2013).   DOI
3 T. Hatano, Y. Kurosawa and J. Miyake, J. Electron. Mater., 29, 611 (2000).   DOI
4 E. Edqvist, N. Snis and S. Johansson, JMM., 18, 015007 (2008).
5 P. Calvert, Chem. Mater., 13, 3299 (2001).   DOI
6 A. Kumar, H. A. Biebuyck and G. M. Whitesides, Langmuir, 10, 1498 (1994).   DOI
7 L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari and H. A. Stone, Nat. Mater., 6, 661 (2007).   DOI
8 W. Barthlott and C. Neinhuis, Planta, 202, 1 (1997).   DOI
9 K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides and C. Cardinaud, Langmuir, 25, 11748 (2009).   DOI
10 T. J. Ko, K. H. Oh and M. W. Moon, Adv. Mater. Interfaces, 2, 1400431 (2015).   DOI
11 M. Paunovic, Modern Electroplating, 5th ed., p.433, M. Schlesinger and M. Paunovic, ECS, New Jersey, USA (2010).
12 L. S. Li, X. R. Li, W. X. Zhao, Q. Ma, X. B. Lu and Z. L. Wang, Int. J. Electrochem. Sci., 8, 5191 (2013).
13 G. Whyman, E. Bormashenko and T. Stein, Chem. Phys. Lett., 450, 355 (2008).   DOI
14 K. Woo, D. Kim, J. S. Kim, S. Lim and J. Moon, Langmuir, 25, 429 (2008).
15 A. B. D. Cassie, Discuss. Faraday Soc., 3, 11 (1948).   DOI
16 D. Quere, Nat. Mater., 1, 14 (2002).   DOI
17 A. Marmur, Langmuir, 19, 8343 (2003).   DOI
18 R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936).   DOI
19 A. Lafuma and D. Quere, Nat. Mater., 2, 457 (2003).   DOI
20 M. Reyssat, J. Yeomans and D. Quere, Europhys. Lett., 81, 26006 (2008).   DOI
21 C. Ishino, K. Okumura and D. Quere, Europhys. Lett., 68, 419 (2004).   DOI
22 C. Ishino and K. Okumura, Europhys. Lett. E, 25, 415 (2008).
23 D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan and S. Moulinet, Europhys. Lett., 74, 299 (2006).   DOI
24 S. Moulinet and D. Bartolo, Europhys. Lett. E, 24, 251 (2007).
25 J. Schultz and M. Nardin, Handbook of Adhesive Technology, 2nd ed., p.54, A. Pizzi and K. L. Mittal, Marcel Dekker, Inc., New York, USA (2003).