Browse > Article

Dependence of Dielectric Layer and Electrolyte on the Driving Performance of Electrowetting-Based Liquid Lens  

Lee, June-Kyoo (School of Electrical Engineering and Computer Science, Kyungpook National University)
Park, Kyung-Woo (School of Electrical Engineering and Computer Science, Kyungpook National University)
Kim, Hak-Rin (School of Electrical Engineering and Computer Science, Kyungpook National University)
Kong, Seong-Ho (School of Electrical Engineering and Computer Science, Kyungpook National University)
Publication Information
Abstract
This paper presents the effects of a dielectric layer and an electrolyte on the driving performance of an electrowetting on dielectric (EWOD)-based liquid lens. The range of tunable focal length of the EWOD-based liquid lens was highly dependent on the conditions of the dielectric layer, which included an inorganic oxide layer and an organic hydrophobic layer. Moreover, experiments on the physical and optical durability of electrolyte by varying temperature conditions, were conducted and their results were discussed. Finally, the lens with a truncated-pyramid silicon cavity having a sidewall dielectrics and electrode was fabricated by anisotropic etching and other micro-electromechanical systems (MEMS) technologies in order to demonstrate its performance. The lens with $0.6-{\mu}m$-thick $SiO_2$ layer and 10 wt% LiCl-electrolyte exhibited brilliant focal-length tunability from infinity to 3.19 mm.
Keywords
EWOD; liquid lens; dielectric; electrolyte; contanct angle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. Qui, I. Rau, J. O. Olowolafe, and J. S. Suehle, IEEE Trans. Electron Devices 47, 121 (2000).   DOI   ScienceOn
2 S. Berry, J. Kedzierski, and B. Abedian, J. Colloid Interface Sci. 303, 517 (2006).   DOI   ScienceOn
3 A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 107, 1163 (2003).   DOI   ScienceOn
4 B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).   DOI   ScienceOn
5 S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).   DOI   ScienceOn
6 B. Hendriks and S. Kuiper, IEEE Spectr. 41, 32 (2004).
7 K. -S. Yun, I. -J. Cho, J. -U. Bu, C. -J. Kim, and E. Yoon, J. Microelectromech. Syst. 11, 454 (2002).   DOI   ScienceOn
8 P. Y. Paik, V. K. Pamula, and K. Chakrabarty, IEEE Des. Test Comput. 25, 372 (2008).   DOI
9 R. A. Hayes and B. J. Feenstra, Nature 425, 383 (2003)   DOI   ScienceOn
10 Y. S. Nanayakkara, H. Moon, T. Payagala, A. B. Wijeratne, J. A. Crank, P. S. Sharma, and D. W. Armstrong, Anal. Chem. 80, 7690 (2008).   DOI   ScienceOn
11 S. Xu, Y. J. Lin, and S. T. Wu, Opt. Express 17, 10499 (2009).   DOI
12 C. C. Cheng, and J. A. Yeh, Opt. Express. 15, 7140 (2007).   DOI
13 B. Berge, Nikkei Electronics 911, 129 (2005).
14 H. Moon, S. K. Cho, R. L. Garrell, and C. -J. Kim, J. Appl. Phys. 92, 4080 (2002).   DOI   ScienceOn
15 F. Mugele and J. -C. Baret, J. Phys. -Condes. Matter 17, R705 (2005).   DOI   ScienceOn