• Title/Summary/Keyword: silicon content

Search Result 358, Processing Time 0.026 seconds

The properties of low hydrogen content silicon thin films for ELA(Excimer Laser Annealing) (ELA를 위한 저수소화 Si 박막의 특성에 관한 연구)

  • 권도현;류세원;박성계;남승의;김형준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.476-479
    • /
    • 2000
  • In this study, mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that a mesh was attached to the substrate holding electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied dias. Applied DC bias enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom. The structural properties of poly-Si films were analyzed by scanning electron microscopy(SEM).

  • PDF

The Effects of HLB Value of the Surfactants Added in the Silicon Oil Emulsion Antifoamer on the Antifoaming Ability (실리콘오일 에멀젼 소포제 조성에 있어서 유화제의 HLB가 소포성능에 미치는 영향)

  • Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.223-232
    • /
    • 2010
  • The effects of HLB value of nonionic mixed surfactants on the stability and antifoaming ability for silicon oil type emulsions were studied. To obtain a stable silicone emulsions, a higher HLB values and higher content of surfactants were preferred. To obtain a good antifoaming ability, however, a lower HLB value (more hydrophobic) and a lower content of the surfactants were preferred. It was observed, at lower HLB values(8 or 9), that the silicone oil drops were spreaded on the foam surface and effectively reduced the surface tension. And the spreading phenomena presumably acted as an antifoaming mechanism. Therefore, a higher hydrophobicity of the silicone oil emulsion resulted in a higher ability of antifoaming action.

Evaluation of Human Factors on Subtitle Content Displayed in Augmented Reality (증강현실 자막 콘텐츠 표시에 대한 휴먼팩터 평가)

  • Kim, Dae-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.739-747
    • /
    • 2022
  • In this study, the effect of augmented reality subtitle content on users was investigated by using a subjective evaluation method and a statistical approach. The human factor was defined as subtitle position and font size. Then, we analyzed the effects of the defined factors on human eye comfort and visibility. Ten participants conducted related survey evaluation tasks with a 1-minute break after viewing the content for 3 minutes.

A Study of a Changing of Physical and Chemical Intra-structure on Si-DLC Film during Tribological Test (실리콘 함유 DLC 박막의 마찰마모 시험에 의한 물리적 특성 및 화학적 결합 구조 변화 고찰)

  • Kim, Sang-Gweon;Lee, Jae-Hoon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • The silicon-containing Diamond-like Carbon (Si-DLC) film as an low friction coefficient coating has especially treated a different silicon content by plasma-enhanced chemical vapor deposition (PECVD) process at $500^{\circ}C$ on nitrided-STD 11 mold steel with (TMS) gas flow rate. The effects of variable silicon content on the Si-DLC films were tested with relative humidity of 5, 30 and 85% using a ball-on-disk tribometer. The wear-tested and original surface of Si-DLC films were analysed for an understanding of physical and chemical characterization, including a changing structure, via Raman spectra and nano hardness test. The results of Raman spectra have inferred a changing intra-structure from dangling bonds. And high silicon containing DLC films have shown increasing carbon peak ratio ($I_D/I_G$) values and G-peak values. In particular, the tribological tested surface of Si-DLC was shown the increasing hardness value in proportional to TMS gas flow rate. Therefore, at same time, the structure of the Si-DLC film was changed to a different intra-structure and increased hardness film with mechanical shear force and chemical reaction.

Effect of Work Function of Zn-doped ITO Thin Films on Characteristics of Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지 특성에 대한 Zn 도핑된 ITO 박막의 일함수 효과)

  • Lee, Seung-Hun;Tark, Sung-Ju;Choi, Su-Young;Kim, Chan-Seok;Kim, Won-Mok;Kim, Dong-Hhwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.491-496
    • /
    • 2011
  • Transparent conducting oxides (TCOs) used in the antireflection layer and current spreading layer of heterojunction solar cells should have excellent optical and electrical properties. Furthermore, TCOs need a high work function over 5.2 eV to prevent the effect of emitter band-bending caused by the difference in work function between emitter and TCOs. Sn-doped $In_2O_3$ (ITO) film is a highly promising material as a TCO due to its excellent optical and electrical properties. However, ITO films have a low work function of about 4.8 eV. This low work function of ITO films leads to deterioration of the conversion efficiency of solar cells. In this work, ITO films with various Zn contents of 0, 6.9, 12.7, 28.8, and 36.6 at.% were fabricated by a co-sputtering method using ITO and AZO targets at room temperature. The optical and electrical properties of Zn-doped ITO thin films were analyzed. Then, silicon heterojunction solar cells with these films were fabricated. The 12.7 at% Zn-doped ITO films show the highest hall mobility of 35.71 $cm^2$/Vsec. With increasing Zn content over 12.7, the hall mobility decreases. Although a small addition of Zn content increased the work function, further addition of Zn content over 12.7 at.% led to decreasing electrical properties because of the decrease in the carrier concentration and hall mobility. Silicon heterojunction solar cells with 12.7 at% Zn-doped ITO thin films showed the highest conversion efficiency of 15.8%.

Development of Polymer-derived Silicon Carbide Fiber with Low Oxygen Content Using a Cyclohexene Vapor Process (싸이클로헥센 증기 공정에 의한 산소량이 적은 실리콘카바이드 섬유의 개발)

  • Yoon, Byungil;Choi, Woo Chul;Kim, Myeong Ju;Kim, Jae Sung;Kim, Jung il;Kang, Hong Gu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.620-632
    • /
    • 2017
  • A chemical vapor curing method(CVC) was developed to cure polycarbosilane(PCS) fibers by using cyclohexene vapour as a non-oxygen active reactant, instead of air in oder to prepare the silicon carbide(SiC) fiber with low oxygen content. A cross-linked PCS fibers by cyclohexene vapor showed a completely different variation in IR spectra in comparison to the air-cured PCS fiber. CVC method resulted in less than 3 wt% in oxygen content. In this experiment conditions, The average tensile strength and modulus of SiC fiber obtained by CVC had 1995 MPa and 183 GPa respectively, which is higher than that of SiC fiber prepared by air-curing process.

Preparation of Si(Al)ON Precursor Using Organoaluminum Imine and Poly (Phenyl Carbosilane), and the Compositional Change of the Film with Different Heat Treatment Condition

  • Lee, Yoonjoo;Shin, Dong-Geun;Kwon, Woo Teck;Kim, Soo Ryong;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.243-247
    • /
    • 2015
  • Si(Al)ON precursor was synthesized by formation of new Si-N bond using organoaluminum imine and liquid type poly(phenyl carbosilane). It was decomposed between $200-600^{\circ}C$, and the ceramic yield was 51% after pyrolysis. 150 - 200 nm in thickness of coating film was obtained by spin coating method. The precursor was easily oxidized during process because it was unstable in air. However the oxygen content was limited to 0.5 - 0.7 to silicon in heat treatment step. Even though the content of nitrogen was decreased by pyrolysis, Al-N and Si-N bonds were formed in ammonia atmosphere, and Si(Al)ON film was formed with 0.2 in content to silicon.

Effects of Pressure, Superheat and Si Content on the Fluidity of Al-Si Alloy during Squeeze Casting (Al-Si 합금의 용탕 단조시 유동도에 미치는 압력, 과열 및 규소 함량의 영향)

  • Lee, Hag-Ju;Jung, Ki-Hwan;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.26 no.3
    • /
    • pp.133-139
    • /
    • 2006
  • The effects of applied pressure, superheat and silicon content on the fluidity of Al-Si alloy during squeeze casting were investigated. The Fluidity of Al-7.0wt%Si alloy during squeeze casting was increased with applied pressure up to 60 MPa, meanwhile it rather decreased beyond that. Therefore, the optimum squeeze casting pressure was 60 MPa. The fluidity was increased with superheat up to $150^{\circ}C$. On the other hand, it rather decreased at the superheat of $200^{\circ}C$. The fluidity of Al-Si alloy during squeeze casting was decreased with silicon content in the range of $0.0{\sim}3.0\;wt%$, increased in the range of $3.0{\sim}13.0\;wt%$. The fluidity of Al-15.0 wt%Si alloy was lower than that of Al-13.0 wt%Si alloy.