• Title/Summary/Keyword: silicides

Search Result 128, Processing Time 0.023 seconds

Investigation of Thin Film Structures of Cobalt Silicides Formed with a Co Monolayer and a Co/Ti Bilayer (Co 단일층과 Co/Ti 이중층에 의하여 형성된 코발트 실리사이드막의 구조)

  • Lee, Jong-Mu;Lee, Byeong-Uk;Gwon, Yeong-Jae;Kim, Yeong-Uk;Lee, Su-Cheon
    • Korean Journal of Materials Research
    • /
    • v.6 no.9
    • /
    • pp.861-870
    • /
    • 1996
  • Co 단일층과 Co/Ti 이중층으로부터 형성된 코발트 실리사이드를 최종 막의 구조와 에피텍셜 성장 측면에서 조사하였다. Co 단일층은 그 두께와는 관계없이 전체 막이 CoSi2로 변화된 반면에, Co/Ti 이중층 구조에서는 Co와 Ti 막의 두께비가 최종막 구조에 상당한 영향을 주었다. 그리고 CoSi2막의 에피 성장이 Co 단일층에서 보다는 Co/Ti 이중층에서 보다 용이하였다.

  • PDF

Ni Silicide Formation and the Crystalline Silicion Film Growth

  • Kim, Jun-Dong;Ji, Sang-Won;Park, Yun-Chang;Lee, Jeong-Ho;Han, Chang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.219-219
    • /
    • 2010
  • Silicides have been commonly used in the Si technology due to the compatibility with Si. Recently the silicide has been applied in solar cells [1] and nanoscale interconnects [2]. The modulation of Ni silicide phase is an important issue to satisfy the needs. The excellent electric-conductive nickel monosilicide (NiSi) nanowire has proven the low resistive nanoscale interconnects. Otherwise the Ni disilicide (NiSi2) provides a template to grow a crystalline Si film above it by the little lattice mismatch of 0.4% between Si and NiSi2. We present the formation of Ni silicide phases performed by the single deposition and the co-deposition methods. The co-deposition of Ni and Si provides a stable Ni silicide phase at a reduced processing temperature comparing to the single deposition method. It also discusses the Schottky contact formation between the Ni silicide and the grown crystalline Si film for the solar cell application.

  • PDF

Ultra-fine Grained and Dispersion-strengthened Titanium Materials Manufactured by Spark Plasma Sintering

  • Handtrack, Dirk;Sauer, Christa;Kieback, Bernd
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.725-726
    • /
    • 2006
  • Ultra-fine grained and dispersion-strengthened titanium materials (Ti-Si, Ti-C, Ti-Si-C) have been produced by high energy ball milling and spark plasma sintering (SPS). Silicon or/and carbon were milled together with the titanium powder to form nanometer-sized and homogeneously distributed titanium silicides or/and carbides as dispersoids, that should prevent grain coarsening during the SPS compaction and contribute to strengthening of the material. The microstructures and the mechanical properties showed that strength, hardness and wear resistance of the sintered materials have been significantly improved by the mechanisms of grain refinement and dispersion strengthening. The use of an organic fluid as carrier of the dispersoid forming elements caused a significant increase in ductility.

  • PDF

A Study on the Silicidation of Thick Co/Ti Bilayer (두꺼운 이중층 Co/Ti 막의 실리사이드화에 관한 연구)

  • 이병욱;권영재;이종무;김영욱
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1012-1018
    • /
    • 1996
  • To investigate the final structures and reactions of silicides a somewhat thick Ti monolayer Co monolayer and Co/Ti bilayer films were deposited on single Si(100) wafer by electron beam evaporation followed by heat treatment using RTA system in N2 ambient. TiO2 film formed between Ti and TiSi2 layers due to oxgen or moisture in the Ti monolayer sample. The final layer structure obtained after the silicidation heat-treatment of the Co/Ti bilayer sample turned out to be TiSi2/CoSi2/Ti-Co-Si alloy/CoSi2/Si sbustrate. This implies that imperfect layer inversion occurred due to the formation of Ti-Co-Si intermediate phase.

  • PDF

Fabrication of Silicide-based Thermoelectric Nanocomposites: A Review

  • Kim, Gwansik;Kim, Wonkyung;Lee, Wooyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.435-442
    • /
    • 2019
  • Thermoelectric is a promising technology that can convert temperature differences to electricity (or vice versa). However, their relatively low efficiencies limit their applications to thermoelectric power generation systems. Therefore, low cost and high performance are important prerequisites for the application of thermoelectric materials to automotive thermoelectric generators. Silicide-based thermoelectric materials are good candidates for such applications. Recently, the thermoelectric performances of silicide-based thermoelectric materials have been significantly improved. However, increasing the thermoelectric performance of the materials while ensuring mechanical reliability remains a challenge. This review summarizes the preparation and design guidelines for silicide-based thermoelectric nanocomposites, as well as our recent progress in the development of nanocomposites with high thermoelectric performances or high mechanical reliabilities.

Fabrication of a Au/Ni/Ti/3C-SiC Schottky Diode and its Characteristics for High-voltages (고내압용 Au/Ni/Ti/3C-SiC 쇼트키 다이오드의 제작과 그 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.261-265
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a Au/Ni/Ti/3C-SiC Schottky diode with field plate (FP) edge termination. The Schottky contacts were annealed for 30 min at temperatures ranging from 0 to $800^{\circ}C$. At annealing temperature of $600^{\circ}C$, it showed an inhomogeneous Schottky barrier and had the best electrical characteristics. However, the annealing of $800^{\circ}C$ replaced it with ohmic behaviors because of the formation of many different types of nickel silicides. The fabricated Schottky diode had a breakdown voltage of 200 V, Schottky barrier height of 1.19 eV and worked normally even at $200^{\circ}C$.

Effect of Pd addition on nickel silicide : ab initio calculation (Nickel silicide에 대한 Pd 첨가 효과 : ab initio 계산)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.7-10
    • /
    • 2008
  • Effect of Pd addition on crystal structures of two nickel silicides, NiSi and $NiSi_2$, is investigated by using an ab initio calculation. A Pd atom substitutes a Ni and Si site, respectively, to evaluate the preferable site between them. Pd prefers Ni site to Si site in NiSi, while it prefers Si site to Ni site in $NiSi_2$. The calculated total energy also indicates that the Pd substitution to Si site stabilizes the $NiSi_2$ structure. This calculated data matches well with the experimental data obtained from Atom probe.

  • PDF

A Study on the Ti-Silicide Formation (Ti-실리사이드 형성에 관한 연구)

  • Kim, Hark-Gyun;Joo, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.454-457
    • /
    • 1987
  • Formation of the titanium silicides was performed by the furnace annealing. Ti-silicide was formed by reacting Ti films with singlecrystalline silicon in vacuum or nitrogen ambient in the temperature range $500{\sim}900^{\circ}C$. The Ti-Si interaction in such films was investigated by using X-ray diffraction, and sheet resistance measurements. It was found that the dorminant crystal phase of silicide formed during annealing at $600{\sim}700^{\circ}C$ was TiSi, and $TiSi_2$ phase is associated with a very low sheet resistance(<$2{\Omega}/{\Box}$).

  • PDF

Phase Transition and Formatio of $TiSi_2$ Codeposited on Atomicaily Clean Si(111) (초청정 Si기판에 동시 증착된 $TiSi_2$ 의 상전이 및 형성)

  • Gang, Eung-Yeol;Jo, Yun-Seong;Park, Jong-Wan;Jeon, Hyeong-Tak;Nemaniah, R.J.
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.107-112
    • /
    • 1994
  • The phase transition and the surface and interface morphologies of $TiSi_2$ formed on atomically clean Si substrates are investigated. 200$\AA$ Ti and 400$\AA$ Si films on Si(ll1) have been codeposited at elevated temperatures (400~$800^{\circ}C$) in ultrahigh vacuum. The phase transition of TiSiL is characterized with using XRD. The results distinguish the formation of the C49 and C54 crystalline titanium silicides. The surface and interface morphologies of titanium silicides have been examined with SEM and TEM. A relatively smootb surface is observed for the C49 phase while a rough surface and interface are observed for C54 phase. The islanding of the C54 phase becomes severe at high temperature ($800^{\circ}C$). Islands of TiSiL have been observed at temperatures above $700^{\circ}C$ but no islands are observed at temperatures below $600^{\circ}C$. For films deposited at $400^{\circ}C$ and 500%. weak XRD peaks corresponding to TiSi were observed and TEM micrographs exhibited small crystalline regions of titanium silicide at the interface.

  • PDF

Property of Composite Titanium Silicides on Amorphous and Crystalline Silicon Substrates (아몰퍼스실리콘의 결정화에 따른 복합티타늄실리사이드의 물성변화)

  • Song Oh-Sung;Kim Sang-Yeob
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.1-5
    • /
    • 2006
  • We prepared 80 nm-thick TiSix on each 70 nm-thick amorphous silicon and polysilicon substrate using an RF sputtering with $TiSi_2$ target. TiSix composite silicide layers were stabilized by rapid thermal annealing(RTA) of $800^{\circ}C$ for 20 seconds. Line width of $0.5{\mu}m$ patterns were embodied by photolithography and dry etching process, then each additional annealing process at $750^{\circ}C\;and\;850^{\circ}C$ for 3 hours was executed. We investigated the change of sheet resistance with a four-point probe, and cross sectional microstructure with a field emission scanning electron microscope(FE-SEM) and transmission electron microscope(TEM), respectively. We observe an abrupt change of resistivity and voids at the silicide surface due to interdiffusion of silicide and composite titanium silicide in the amorphous substrates with additional $850^{\circ}C$ annealing. Our result implies that the electrical resistance of composite titanium silicide may be tunned by employing appropriate substrates and annealing condition.

  • PDF