Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.5.03

Fabrication of Silicide-based Thermoelectric Nanocomposites: A Review  

Kim, Gwansik (Department of Materials Science and Engineering, Yonsei University)
Kim, Wonkyung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Abstract
Thermoelectric is a promising technology that can convert temperature differences to electricity (or vice versa). However, their relatively low efficiencies limit their applications to thermoelectric power generation systems. Therefore, low cost and high performance are important prerequisites for the application of thermoelectric materials to automotive thermoelectric generators. Silicide-based thermoelectric materials are good candidates for such applications. Recently, the thermoelectric performances of silicide-based thermoelectric materials have been significantly improved. However, increasing the thermoelectric performance of the materials while ensuring mechanical reliability remains a challenge. This review summarizes the preparation and design guidelines for silicide-based thermoelectric nanocomposites, as well as our recent progress in the development of nanocomposites with high thermoelectric performances or high mechanical reliabilities.
Keywords
Silicides; Nanocomposites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science, 320 [5876] 634-38 (2008).   DOI
2 N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. R. Salvador, and H. Kleinke, "Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped $Mg_2Si_{0.7}Ge_{0.3}$," J. Electron. Mater., 45 [12] 6052-58 (2016).   DOI
3 N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. Zhao, J. S. Tse, J. R. Salvador, and H. Kleinke, "Enhanced Figure of Merit in $Mg_2Si_{0.877}Ge_{0.1}Bi_{0.023}$/Multi Wall Carbon Nanotube Nanocomposites," RSC Adv., 5 65328-36 (2015).   DOI
4 T. Itoh and A. Tominaga, "Influence of Pulverization and CaO Nanoparticles Addition on Thermoelectric Properties and Grain Growth of $Mg_2Si$ Based Compound," Mater. Trans., 57 [7] 1088-93 (2016).   DOI
5 T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N. A. Katcho, A. Shakouri, N. Mingo, J. P. Fleurial, N. D. Browning, and S. M. Kauzlarich, "Synthesis and Characterization of $Mg_2Si$/Si Nanocomposites Prepared from $MgH_2$ and Silicon, and Their Thermoelectric Properties," J. Mater. Chem., 22 24805-13 (2012).   DOI
6 D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, A. E. C. Palmqvist, "Enhanced Thermoelectric Properties of $Mg_2Si$ by Addition of $TiO_2$ Nanoparticles," J. Appl. Phys., 111 [47] 023701 (2012).   DOI
7 Y. Lin, K. A. Watson, M. J. Fallbach, S. Ghose, J. G. Smith, D. M. Delozier Jr., W. Cao, R. E. Crooks, and J. W. Connell, "Rapid, Solventless, Bulk Preparation of Metal Nanoparticle-Decorated Carbon Nanotubes," ACS Nano, 3 [4] 871-84 (2009).   DOI
8 G. Kim, H. J. Rim, H. Lee, J. Kim, J. W. Roh, K. H. Lee, and W. Lee, "$Mg_2Si$-based Thermoelectric Compounds with Enhanced Fracture Toughness by Introduction of Dual Nanoinclusions," J. Alloys Compd., 801 234-38 (2019).   DOI
9 K. Yin, X. Su, Y. Yan, H. Tang, M. G. Kanatzidis, C. Uher, and X. Tang, "Morphology Modulation of SiC Nano-Additives for Mechanical Robust High Thermoelectric Performance $Mg_2Si_{1-x}Sn_x/SiC$ Nano-Composites," Scr. Mater., 126 1-5 (2017).   DOI
10 Z. Li, J. F. Dong, F. H. Sun, Asfandiyar, Y. Pan, S. F. Wang, Q. Wang, D. Zhang, L. Zhao, and J. F. Li, "MnS Incorporation into Higher Manganese Silicide Yields a Green Thermoelectric Composite with High Performance/Price Ratio," Adv. Sci., 5 [9] 1800626 (2018).   DOI
11 B. Zhang, T. Zheng, Q. Wang, Y. Zhu, H. N. Alshareef, M. J. Kim, and B. E. Gnade, "Contact Resistance and Stability Study for Au, Ti, Hf and Ni Contacts on Thin-Film $Mg_2Si$," J. Alloys Compd., 699 1134-39 (2017).   DOI
12 Z. Li, J. F. Dong, F. H. Sun, S. Hirono, and J. F. Li, "Significant Enhancement of the Thermoelectric Performance of Higher Manganese Silicide by Incorporating MnTe Nanophase Derived from Te Nanowire," Chem. Mater., 29 [17] 7378-89 (2017).   DOI
13 H. Lee, G. Kim, B. Lee, J. Kim, S. M. Choi, K. H. Lee, and W. Lee, "Effect of Si Content on the Thermoelectric Transport Properties of Ge-doped Higher Manganese Silicides," Scr. Mater., 135 72-5 (2017).   DOI
14 Y. Gelbstein, J. Tunbridge, R. Dixon, M. J. Reece, H. Ning, R. Gilchrist, R. Summers, I. Agote, M. A. Lagos, K. Simpson, C. Rouaud, P. Feulner, S. Rivera, R. Torrecillas, M. Husband, J. Crossley, and I. Robinson, "Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications," J. Electron. Mater., 43 [6] 1703-11 (2014).   DOI
15 W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, "Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type $Mg_2Si_{1-x}Sn_x$ Solid Solutions," Phys. Rev. Lett., 108 [16] 166601 (2012).   DOI
16 L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, "Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals," Nature, 508 373-77 (2014).   DOI
17 W. D. Liu, Z. G. Chen, and J. Zou, "Eco-Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges," Adv. Energy Mater., 8 [19] 1800056 (2018).   DOI
18 Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, and T. M. Tritt, "High Figures of Merit and Natural Nanostructures in $Mg_2Si_{0.4}Sn_{0.6}$ based Thermoelectric Materials," Appl. Phys. Lett., 93 [10] 102109 (2008).   DOI
19 K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, "High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures," Nature, 489 414-18 (2012).   DOI
20 BCS, Waste Heat Recovery: Technology and Opportunities in U.S. Industry Engineering Scoping Study; pp. 13, U.S. Department of Energy, Industrial Technologies Program, 2008.
21 X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports," J. Am. Chem. Soc., 133 [20] 7837-46 (2011).   DOI
22 S. Chen, K. C. Lukas, W. Liu, C. P. Opeil, G. Chen, and Z. Ren, "Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N-Type Half-Heusler Materials $HfxZr_{1-x}NiSn_{0.99}Sb_{0.01}$," Adv. Funct. Mater., 3 [9] 1210-14 (2013).
23 G. Kim, S. W. Kim, H. J. Rim, H. Lee, J. Kim, J. W. Roh, B. W. Kim, K. H. Lee, and W. Lee, "Improved Trade-Off between Thermoelectric Performance and Mechanical Reliability of $Mg_2Si$ by Hybridization of Few-Layered Reduced Graphene Oxides," Scr. Mater., 162 402-7 (2019).   DOI
24 G. Kim, H. Lee, J. Kim, J. W. Roh, I. Lyo, B. W. Kim, K. H. Lee, and W. Lee, "Enhanced Fracture Toughness of Al and Bi Co-doped $Mg_2Si$ by Metal Nanoparticle Decoration," Ceram. Int., 43 [15] 12979-82 (2017).   DOI
25 G. Kim, H. Lee, H. J. Rim, J. Kim, K. Kim, J. W. Roh, S. M. Choi, B. W. Kim, K. H. Lee, and W. Lee, "Dependence of Mechanical and Thermoelectric Properties of $Mg_2Si$-Sn Nanocomposites on Interface Density," J. Alloys Compd., 769 53-8 (2018).   DOI
26 J. Boor, T. Dasgupta, H. Kolb, C. Compere, K. Kelm, and E. Mueller, "Microstructural Effects on Thermoelectric Efficiency: A Case Study on Magnesium Silicide," Acta Mater., 77 68-75 (2014).   DOI
27 G. Kim, J. Kim, H. Lee, S. Cho, I. Lyo, S. Noh, B. W. Kim, S. W. Kim, K. H. Lee, and W. Lee, "Co-doping of Al and Bi to Control the Transport Properties for Improving Thermoelectric Performance of $Mg_2Si$," Scr. Mater., 116 11-15 (2011).   DOI
28 N. Satyala and D. Vashaee, "Detrimental Influence of Nanostructuring on the Thermoelectric Properties of Magnesium Silicide," J. Appl. Phys., 112 [9] 093716 (2012).   DOI
29 P. Norouzzadeh, Z. Zamanipour, J. S. Krasinski, and D. Vashaee, "The Effect of Nanostructuring on Thermoelectric Transport Properties of p-Type Higher Manganese Silicide $MnSi_{1.73}$," J. Appl. Phys., 112 [12] 124308 (2012).   DOI
30 N. Satyala and D. Vashaee, "The Effect of Crystallite Size on Thermoelectric Properties of Bulk Nanostructured Magnesium Silicide ($Mg_2Si$) Compounds," Appl. Phys. Lett., 100 073107 (2012).   DOI
31 K. Kim, G. Kim, S. I. Kim, K. H. Lee, and W. Lee, "Clarification of Electronic and Thermal Transport Properties of Pb-, Ag-, and Cu-doped p-type $Bi_{0.52}Sb_{1.48}Te_3$," J. Alloys Compd., 772 593-602 (2019).   DOI
32 G. Kim, H. Lee, J. Kim, J. W. Roh, I. Lyo, B. W. Kim, K. H. Lee, and W. Lee, "Up-Scaled Solid State Reaction for Synthesis of Doped $Mg_2Si$," Scr. Mater., 128 53-56 (2017).   DOI
33 A. U. Khan, N. Vlachos, and Th. Kyratsi, "High Thermo-Electric Figure of Merit of $Mg_2Si_{0.55}Sn_{0.4}Ge_{0.05}$ Materials Doped with Bi and Sb," Scr. Mater., 69 [8] 606-9 (2013).   DOI
34 X. Chen, A. Weathers, D. Salta, L. Zhang, J. Zhou, J. B. Goodenough, and L. Shi, "Effects of (Al,Ge) Double Doping on the Thermoelectric Properties of Higher Manganese Silicides," J. Appl. Phys., 114 [17] 173705 (2013).   DOI
35 C. L. Chen, H. Wang, Y. Y. Chen, T. Day, and G. J. Snyder, "Thermoelectric Properties of p-Type Polycrystalline SnSe Doped with Ag," J. Mater. Chem. A, 2 [29] 11171-76 (2014).   DOI
36 G. Kim, H. J. Rim, K. H. Lee, J. W. Roh, and W. Lee, "Suppressed Secondary Phase Generation in Thermoelectric Higher Manganese Silicide by Fabrication Process Optimization," Ceram. Int., 45 [15] 19538-41 (2019).   DOI
37 Y. Sadia, Z. Aminov, D. Mogilyansky, and Y. Gelbstein, "Texture Anisotropy of Higher Manganese Silicide Following Arc-Melting and Hot-Pressing," Intermetallics, 68 71-7 (2016).   DOI
38 S. Muthiah, R. C. Singh, B. D. Pathak, P. K. Avasthi, R. Kumar, A. Kumar, A. K. Srivastava, and A. Dhar, "Significant Enhancement in Thermoelectric Performance of Nanostructured Higher Manganese Silicides Synthesized Employing a Melt Spinning Technique," Nanoscale, 10 [4] 1970-77 (2018).   DOI