• 제목/요약/키워드: signaling chemical

검색결과 233건 처리시간 0.023초

Neurotoxin-Induced Pathway Perturbation in Human Neuroblastoma SH-EP Cells

  • Do, Jin Hwan
    • Molecules and Cells
    • /
    • 제37권9호
    • /
    • pp.672-684
    • /
    • 2014
  • The exact causes of cell death in Parkinson's disease (PD) remain unknown despite extensive studies on PD.The identification of signaling and metabolic pathways involved in PD might provide insight into the molecular mechanisms underlying PD. The neurotoxin 1-methyl-4-phenylpyridinium ($MPP^+$) induces cellular changes characteristic of PD, and $MPP^+$-based models have been extensively used for PD studies. In this study, pathways that were significantly perturbed in $MPP^+$-treated human neuroblastoma SH-EP cells were identified from genome-wide gene expression data for five time points (1.5, 3, 9, 12, and 24 h) after treatment. The mitogen-activated protein kinase (MAPK) signaling pathway and endoplasmic reticulum (ER) protein processing pathway showed significant perturbation at all time points. Perturbation of each of these pathways resulted in the common outcome of upregulation of DNA-damage-inducible transcript 3 (DDIT3). Genes involved in ER protein processing pathway included ubiquitin ligase complex genes and ER-associated degradation (ERAD)-related genes. Additionally, overexpression of DDIT3 might induce oxidative stress via glutathione depletion as a result of overexpression of CHAC1. This study suggests that upregulation of DDIT3 caused by perturbation of the MAPK signaling pathway and ER protein processing pathway might play a key role in $MPP^+$-induced neuronal cell death. Moreover, the toxicity signal of $MPP^+$ resulting from mitochondrial dysfunction through inhibition of complex I of the electron transport chain might feed back to the mitochondria via ER stress. This positive feedback could contribute to amplification of the death signal induced by $MPP^+$.

IQGAP1, a signaling scaffold protein, as a molecular target of a small molecule inhibitor to interfere with T cell receptor-mediated integrin activation

  • Li, Lin-Ying;Nguyen, Thi Minh Nguyet;Woo, Eui Jeon;Park, Jongtae;Hwang, Inkyu
    • Korean Journal of Agricultural Science
    • /
    • 제47권2호
    • /
    • pp.361-373
    • /
    • 2020
  • Integrins such as lymphocyte function-associated antigen -1 (LFA-1) have an essential role in T cell immunity. Integrin activation, namely, the transition from the inactive conformation to the active one, takes place when an intracellular signal is generated by specific receptors such as T cell receptors (TCRs) and chemokine receptors in T cells. In an effort to explore the molecular mechanisms underlying the TCR-mediated LFA-1 activation, we had previously established a high-throughput cell-based assay and screened a chemical library deposited in the National Institute of Health in the United States. As a result, several hits had been isolated including HIKS-1 (Benzo[b]thiophene-3-carboxylic acid, 2-[3-[(2-carboxyphenyl) thio]-2,5-dioxo-1-pyrrolinyl]-4,5,6,7-tetrahydro-,3-ethyl ester). In an attempt to reveal the mode of action of HIKS-1, in this study, we did drug affinity responsive target stability (DARTS) assay finding that HIKS-1 interacted with the IQ motif containing GTPase activating protein 1 (IQGAP1), a 189 kDa multidomain scaffold protein critically involved in various signaling mechanisms. Furthermore, the cellular thermal shift assay (CETSA) provided compelling evidence that HIKS-1 also interacted with IQGAP1 in vivo. Taken together, it can be concluded that HIKS-1 interferes with the TCR-mediated LFA-1 activation by interacting with IQGAP1 and thereby disrupting the signaling pathway for LFA-1 activation.

Oleanolic Acids Inhibit Vascular Endothelial Growth Factor Receptor 2 Signaling in Endothelial Cells: Implication for Anti-Angiogenic Therapy

  • Lee, Da-Hye;Lee, Jungsul;Jeon, Jongwook;Kim, Kyung-Jin;Yun, Jang-Hyuk;Jeong, Han-Seok;Lee, Eun Hui;Koh, Young Jun;Cho, Chung-Hyun
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.771-780
    • /
    • 2018
  • Angiogenesis must be precisely controlled because uncontrolled angiogenesis is involved in aggravation of disease symptoms. Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR-2) signaling is a key pathway leading to angiogenic responses in vascular endothelial cells (ECs). Therefore, targeting VEGF/VEGFR-2 signaling may be effective at modulating angiogenesis to alleviate various disease symptoms. Oleanolic acid was verified as a VEGFR-2 binding chemical from anticancer herbs with similar binding affinity as a reference drug in the Protein Data Bank (PDB) entry 3CJG of model A coordination. Oleanolic acid effectively inhibited VEGF-induced VEGFR-2 activation and angiogenesis in HUVECs without cytotoxicity. We also verified that oleanolic acid inhibits in vivo angiogenesis during the development and the course of the retinopathy of prematurity (ROP) model in the mouse retina. Taken together, our results suggest a potential therapeutic benefit of oleanolic acid for inhibiting angiogenesis in proangiogenic diseases, including retinopathy.

Elucidation of the Inhibitory Mechanisms of Nipponoparmelia laevior Lichen Extract against Influenza A (H1N1) Virus through Proteomic Analyses

  • Cuong, Tran Van;Cho, Se-Young;Kwon, Joseph;Kim, Duwoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1155-1164
    • /
    • 2019
  • Lichens contain diverse bioactive secondary metabolites with various chemical and biological properties, which have been widely studied. However, details of the inhibitory mechanisms of their secondary metabolites against influenza A virus (IAV) have not been documented. Here, we investigated the antiviral effect of lichen extracts, obtained from South Korea, against IAV in MDCK cells. Of the lichens tested, Nipponoparmelia laevior (LC24) exhibited the most potent inhibitory effect against IAV infection. LC24 extract significantly increased cell viability, and reduced apoptosis in IAV-infected cells. The LC24 extract also markedly reduced (~ 3.2 log-fold) IAV mRNA expression after 48 h of infection. To understand the antiviral mechanism of LC24 against IAV, proteomic (UPLC-$HDMS^E$) analysis was performed to compare proteome modulation in IAV-infected (V) vs. mock (M) and LC24+IAV (LCV) vs. V cells. Based on Ingenuity Pathway Analysis (IPA), LC24 inhibited IAV infection by modulating several antiviral-related genes and proteins (HSPA4, HSPA5, HSPA8, ANXA1, ANXA2, $HIF-1{\alpha}$, AKT1, MX1, HNRNPH1, HNRNPDL, PDIA3, and VCP) via different signaling pathways, including $HIF-1{\alpha}$ signaling, unfolded protein response, and interferon signaling. These molecules were identified as the specific biomarkers for controlling IAV in vitro and further confirmation of their potential against IAV in vivo is required. Our findings provide a platform for further studies on the application of lichen extracts against IAV.

Network pharmacology analysis of Jakyakgamchotang with corydalis tuber for anti-inflammation (작약감초탕 가 현호색의 항염증 기전에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Hongjun Kim;Han-bin Park;Seungho Lee
    • Herbal Formula Science
    • /
    • 제32권1호
    • /
    • pp.39-49
    • /
    • 2024
  • Objectives : The purpose of this study was to investigate the molecular targets and pathways of anti-inflammatory effects of Jakyakgamchotang with corydalis tuber (JC) using network pharmacology. Methods : The compounds in constituent herbal medicines of JC were searched in TCM systems pharmacology (TCMSP). Target gene informations of the components were collected using chemical-target interactions database provided by Pubchem. Afterwards, network analysis between compounds and inflammation-related target genes was performed using cytoscape. Go enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on inflammation-related targets using DAVID database. Results : 70 active compounds related to inflammation were identified, and 295 target genes related to the anti-inflammatory activity of the compound of JC were identified. In the Go biological process DB and KEGG pathway DB, "inflammatory response", "cellular response to lipopolysaccharide", "positive regulation of interleukin-6 production", and "positive regulation of protein kinase B. signaling", "positive regulation of ERK1 and ERK2 cascade", "positive regulation of I-kappaB kinase/NF-kappaB signaling", "negative regulation of apoptotic process", and "PI3K-Akt signaling pathway" were found to be mechanisms related to the anti-inflammatory effects related to the target genes of JC. The main compounds predicted to be involved in the anti-inflammatory effect of JC were quercetin, licochalcone B, (+)-catechin, kaempferol, and emodin. Conclusions : This study provides the molecular targets and potential pathways of JC on inflammation. It can be used as a basic data for using JC for various inflammatory disease in traditional korean medicine clinic.

Selective Chemosensing of Hg2+ Ions by Diazatetrathia-crown Ether Having Nitrobenzoxadiazolyl Subunits

  • Kim, So-Hee;Youn, Na-Jin;Park, Ji-Yeon;Choi, Myung-Gil;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1553-1556
    • /
    • 2006
  • A diazatetrathia crown ether derivative that has two appended nitrobenzoxadiazolyl moieties showed selective OFF-ON type fluoroionophoric signaling properties toward Hg2+ ions over other transition metal ions. The compound also exhibited a pronounced chromogenic behavior toward Hg2+ ions by changing the solution color from light orange to yellow, which can easily be detected with naked-eye. The detection limit for the analysis of Hg2+ ions in 90% aqueous acetonitrile was found to be 4.8??10-6 M, which suggests that the compound may be used as a chemosensor for analyzing sub-millimolar Hg2+ ions in aqueous environments.

Potential Roles of Protease Inhibitors in Cancer Progression

  • Yang, Peng;Li, Zhuo-Yu;Li, Han-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8047-8052
    • /
    • 2016
  • Proteases are important molecules that are involved in many key physiological processes. Protease signaling pathways are strictly controlled, and disorders in protease activity can result in pathological changes such as cardiovascular and inflammatory diseases, cancer and neurological disorders. Many proteases have been associated with increasing tumor metastasis in various human cancers, suggesting important functional roles in the metastatic process because of their ability to degrade the extracellular matrix barrier. Proteases are also capable of cleaving non-extracellular matrix molecules. Inhibitors of proteases to some extent can reduce invasion and metastasis of cancer cells, and slow down cancer progression. In this review, we focus on the role of a few proteases and their inhibitors in tumors as a basis for cancer prognostication and therapy.

Synthesis of Flavokawain B and its Anti-proliferative Activity Against Gefitinib-resistant Non-small Cell Lung Cancer (NSCLC)

  • Seo, Young Ho;Oh, Yong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3782-3786
    • /
    • 2013
  • Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and that accounts for 85% of lung cancer patients. Although several EGFR-targeted drugs have been developed in the treatment of NSCLC, the clinical efficacy of EGFR-targeted drugs in NSCLC is limited by the occurrence of drug resistance. In this regard, Hsp90 represents great promise as a therapeutic target of cancer due to its potential to simultaneously disable multiple signaling pathways. In this study, we discovered that a natural product, flavokawain B disrupted Hsp90 chaperoning function and impaired the growth of gefitinib-resistant non-small cell lung cancer (H1975). The result suggested that flavokawain B could serve as a potential lead compound to overcome the drug resistance in cancer chemotherapy.

Training Molecularly Enabled Field Biologists to Understand Organism-Level Gene Function

  • Kang, Jin-Ho;Baldwin, Ian T.
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.1-4
    • /
    • 2008
  • A gene's influence on an organism's Darwinian fitness ultimately determines whether it will be lost, maintained or modified by natural selection, yet biologists have few gene expression systems in which to measure whole-organism gene function. In the Department of Molecular Ecology at the Max Planck Institute for Chemical Ecology we are training "molecularly enabled field biologists" to use transformed plants silenced in the expression of environmentally regulated genes and the plant's native habitats as "laboratories." Research done in these natural laboratories will, we hope, increase our understanding of the function of genes at the level of the organism. Examples of the role of threonine deaminase and RNA-directed RNA polymerases illustrate the process.

Visual Detection of Di-and Tri-phosphates in Aqueous Solution of Neutral pH

  • Han, Min-Su;Kim, Dong H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권8호
    • /
    • pp.1151-1155
    • /
    • 2004
  • The chemosenssor that consists of [$Zn_2$(1,3-bis[bis(2-pyridylmethyl)aminomethyl]benzene)]$^{4+}$ (receptor) and pyrecatechol violet (signaling unit) detects with naked eyes di- and tri-phosphates conjugated to nucleosides or in free forms. The blue color of the aqueous solution (pH 7.0) of the sensor turns to yellow upon exposing to the analytes.