Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0207

Oleanolic Acids Inhibit Vascular Endothelial Growth Factor Receptor 2 Signaling in Endothelial Cells: Implication for Anti-Angiogenic Therapy  

Lee, Da-Hye (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University)
Lee, Jungsul (Department of Bio and Brain Engineering, KAIST)
Jeon, Jongwook (The Korean Research Institute of Science, Technology and Civilization, Chonbuk National University)
Kim, Kyung-Jin (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University)
Yun, Jang-Hyuk (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University)
Jeong, Han-Seok (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University)
Lee, Eun Hui (Department of Physiology, College of Medicine, The Catholic University of Korea)
Koh, Young Jun (Department of Pathology, College of Korean Medicine, Dongguk University)
Cho, Chung-Hyun (Vascular Microenvironment Laboratory, Department of Pharmacology and Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University)
Abstract
Angiogenesis must be precisely controlled because uncontrolled angiogenesis is involved in aggravation of disease symptoms. Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR-2) signaling is a key pathway leading to angiogenic responses in vascular endothelial cells (ECs). Therefore, targeting VEGF/VEGFR-2 signaling may be effective at modulating angiogenesis to alleviate various disease symptoms. Oleanolic acid was verified as a VEGFR-2 binding chemical from anticancer herbs with similar binding affinity as a reference drug in the Protein Data Bank (PDB) entry 3CJG of model A coordination. Oleanolic acid effectively inhibited VEGF-induced VEGFR-2 activation and angiogenesis in HUVECs without cytotoxicity. We also verified that oleanolic acid inhibits in vivo angiogenesis during the development and the course of the retinopathy of prematurity (ROP) model in the mouse retina. Taken together, our results suggest a potential therapeutic benefit of oleanolic acid for inhibiting angiogenesis in proangiogenic diseases, including retinopathy.
Keywords
angiogenesis; endothelial cells; oleanolic acid; retinopathy of prematurity; VEGFR-2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gologorsky, D., Thanos, A., and Vavvas, D. (2012). Therapeutic interventions against inflammatory and angiogenic mediators in proliferative diabetic retinopathy. Med. Inflammation 2012, 629452.
2 Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364.   DOI
3 Hellstrom, A., Smith, L.E.H., and Dammann, O. (2013). Retinopathy of prematurity. Lancet 382, 1445-1457.   DOI
4 Holash, J., Davis, S., Papadopoulos, N., Croll, S.D., Ho, L., Russell, M., Boland, P., Leidich, R., Hylton, D., Burova, E., et al. (2002). VEGFTrap: a VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 99, 11393-11398.   DOI
5 Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Eng. J. Med. 350, 2335-2342.   DOI
6 Jeong, D.W., Kim, Y.H., Kim, H.H., Ji, H.Y., Yoo, S.D., Choi, W.R., Lee, S.M., Han, C.K., and Lee, H.S. (2007). Dose-linear pharmacokinetics of oleanolic acid afterIntravenous and oral administration in rats. Biopharm. Drug Dispos. 28, 51-57   DOI
7 Krady, J.K., Basu, A., Allen, C.M., Xu, Y., LaNoue, K.F., Gardner, T.W., and Levison, S.W. (2005). Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54, 1559-1565.   DOI
8 Laszczyk, M.N. (2009). Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Medica 75, 1549-1560.   DOI
9 Lee, J., Kim, K.E., Choi, D.K., Jang, J.Y., Jung, J.J., Kiyonari, H., Shioi, G., Chang, W., Suda, T., Mochizuki, N., et al. (2013). Angiopoietin-1 guides directional angiogenesis through integrin alphavbeta5 signaling for recovery of ischemic retinopathy. Sci. Transl. Med. 5, 203ra127.
10 Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., and Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309.   DOI
11 Liu, J. (1995). Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 49, 57-68.   DOI
12 Liu, J., Wu, Q., Lu, Y.F., and Pi, J. (2008). New insights into generalized hepatoprotective effects of oleanolic acid: key roles of metallothionein and Nrf2 induction. Biochem. Pharmacol. 76, 922-928.   DOI
13 Micieli, J.A., Surkont, M., and Smith, A.F. (2009). A systematic analysis of the off-label use of bevacizumab for severe retinopathy of prematurity. Am. J. Ophthalmol. 148, 536-543 e532.   DOI
14 Mocan, M.C., Kadayifcilar, S., and Eldem, B. (2006). Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. Canadian journal of ophthalmology. J. Canadien d'ophtalmologie 41, 747-752.   DOI
15 Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791.   DOI
16 Ng, E.W., Shima, D.T., Calias, P., Cunningham, E.T., Jr., Guyer, D.R., and Adamis, A.P. (2006). Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Dis. 5, 123-132.   DOI
17 Pollier, J., and Goossens, A. (2012). Oleanolic acid. Phytochemistry 77, 10-15.   DOI
18 O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R. (2011). Open Babel: An open chemical toolbox. J. Cheminform. 3, 33.   DOI
19 Olsson, A.K., Dimberg, A., Kreuger, J., and Claesson-Welsh, L. (2006). VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359-371.   DOI
20 Petronelli, A., Pannitteri, G., and Testa, U. (2009). Triterpenoids as new promising anticancer drugs. Anti-cancer Drugs 20, 880-892.   DOI
21 Raju, T.N., Langenberg, P., Bhutani, V., and Quinn, G.E. (1997). Vitamin E prophylaxis to reduce retinopathy of prematurity: a reappraisal of published trials. J. Pediatr. 131, 844-850.   DOI
22 Reddy, A.S., Pati, S.P., Kumar, P.P., Pradeep, H.N., and Sastry, G.N. (2007). Virtual screening in drug discovery -- a computational perspective. Curr. Protein Pept. Sci. 8, 329-351.   DOI
23 Reisman, S.A., Aleksunes, L.M., and Klaassen, C.D. (2009). Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes. Biochem. Pharmacol. 77, 1273-1282.   DOI
24 Rothova, A., Suttorp-van Schulten, M.S., Frits Treffers, W., and Kijlstra, A. (1996). Causes and frequency of blindness in patients with intraocular inflammatory disease. Br. J. Ophthalmol. 80, 332-336.   DOI
25 Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., et al. (2014). TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 6, 13.   DOI
26 Shoichet, B.K. (2004). Virtual screening of chemical libraries. Nature 432, 862-865.   DOI
27 Sapieha, P., Joyal, J.S., Rivera, J.C., Kermorvant-Duchemin, E., Sennlaub, F., Hardy, P., Lachapelle, P., and Chemtob, S. (2010). Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J. Clin. Invest. 120, 3022-3032.   DOI
28 Sato, T., Kusaka, S., Shimojo, H., and Fujikado, T. (2009). Vitreous levels of erythropoietin and vascular endothelial growth factor in eyes with retinopathy of prematurity. Ophthalmology 116, 1599-1603.   DOI
29 Sennino, B., and McDonald, D.M. (2012). Controlling escape from angiogenesis inhibitors. Nat. Rev. Cancer 12, 699-709.   DOI
30 Sohn, K.H., Lee, H.Y., Chung, H.Y., Young, H.S., Yi, S.Y., and Kim, K.W. (1995). Anti-angiogenic activity of triterpene acids. Cancer Lett. 94, 213-218.   DOI
31 Takada, K., Nakane, T., Masuda, K., and Ishii, H. (2010). Ursolic acid and oleanolic acid, members of pentacyclic triterpenoid acids, suppress TNF-alpha-induced E-selectin expression by cultured umbilical vein endothelial cells. Phytomedicine 17, 1114-1119.   DOI
32 Tang, J., and Kern, T.S. (2011). Inflammation in diabetic retinopathy. Prog. Retinal Eye Res. 30, 343-358.   DOI
33 Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461.
34 Villacampa, P., Menger, K.E., Abelleira, L., Ribeiro, J., Duran, Y., Smith, A.J., Ali, R.R., Luhmann, U.F., and Bainbridge, J.W.B. (2017). Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization. PLoS One 12, e0179759.   DOI
35 Yun, J.H., Jeong, H.S., Kim, K.J., Han, M.H., Lee, E.H., Lee, K., and Cho, C.H. (2018). ${\beta}$-Adrenergic receptor agonists attenuate pericyte loss in diabetic retinas through Akt activation. FASEB J. 32, 2324-2338.   DOI
36 Wells, J.A., Murthy, R., Chibber, R., Nunn, A., Molinatti, P.A., Kohner, E.M., and Gregor, Z.J. (1996). Levels of vascular endothelial growth factor are elevated in the vitreous of patients with subretinal neovascularisation. Br. J. Ophthalmol. 80, 363-366.   DOI
37 Yamamoto, Y., Matsui, J., Matsushima, T., Obaishi, H., Miyazaki, K., Nakamura, K., Tohyama, O., Semba, T., Yamaguchi, A., Hoshi, S.S., et al. (2014). Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vascular Cell 6, 18.   DOI
38 Yun, J.H., Park, S.W., Kim, K.J., Bae, J.S., Lee, E.H., Paek, S.H., Kim, S.U., Ye, S., Kim, J.H., and Cho, C.H. (2017). Endothelial STAT3 Activation Increases Vascular Leakage Through Downregulating Tight Junction Proteins: Implications for Diabetic Retinopathy. J. Cell. Physiol. 232, 1123-1134.   DOI
39 Aiello, L.P. (2005). Angiogenic pathways in diabetic retinopathy. N Eng. J. Med. 353, 839-841.   DOI
40 Adamis, A.P., Miller, J.W., Bernal, M.T., D'Amico, D.J., Folkman, J., Yeo, T.K., and Yeo, K.T. (1994). Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445-450.   DOI
41 Aiello, L.P., Avery, R.L., Arrigg, P.G., Keyt, B.A., Jampel, H.D., Shah, S.T., Pasquale, L.R., Thieme, H., Iwamoto, M.A., Park, J.E., et al. (1994). Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Eng. J. Med. 331, 1480-1487.   DOI
42 Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235-242.   DOI
43 Arevalo, J.F., Sanchez, J.G., Wu, L., Maia, M., Alezzandrini, A.A., Brito, M., Bonafonte, S., Lujan, S., Diaz-Llopis, M., Restrepo, N., et al. (2009a). Primary intravitreal bevacizumab for diffuse diabetic macular edema: the Pan-American Collaborative Retina Study Group at 24 months. Ophthalmology 116, 1488-1497, 1497 e1481.   DOI
44 Arevalo, J.F., Wu, L., Sanchez, J.G., Maia, M., Saravia, M.J., Fernandez, C.F., and Evans, T. (2009b). Intravitreal bevacizumab (Avastin) for proliferative diabetic retinopathy: 6-months follow-up. Eye (Lond) 23, 117-123.   DOI
45 Avery, R.L., Pieramici, D.J., Rabena, M.D., Castellarin, A.A., Nasir, M.A., and Giust, M.J. (2006). Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113, 363-372 e365.   DOI
46 Bernatchez, P.N., Soker, S., and Sirois, M.G. (1999). Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J. Biol. Chem. 274, 31047-31054.   DOI
47 Bikfalvi, A. (2004). Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem. Pharmacol. 68, 1017-1021.   DOI
48 Buschini, E., Piras, A., Nuzzi, R., and Vercelli, A. (2011). Age related macular degeneration and drusen: neuroinflammation in the retina. Prog. Neurobiol. 95, 14-25.   DOI
49 Chen, C.Y. (2011). TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in silico. PLoS One 6, e15939.   DOI
50 Chen, J., Connor, K.M., Aderman, C.M., and Smith, L.E. (2008). Erythropoietin deficiency decreases vascular stability in mice. J. Clin. Invest. 118, 526-533.
51 Connor, K.M., SanGiovanni, J.P., Lofqvist, C., Aderman, C.M., Chen, J., Higuchi, A., Hong, S., Pravda, E.A., Majchrzak, S., Carper, D., et al. (2007). Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 13, 868-873.   DOI
52 Demircan, N., Safran, B.G., Soylu, M., Ozcan, A.A., and Sizmaz, S. (2006). Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond) 20, 1366-1369.   DOI
53 Ellis, L.M., and Hicklin, D.J. (2008). VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579-591.   DOI
54 Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine Rev. 25, 581-611.   DOI
55 Ferrara, N., and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967-974.   DOI
56 Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Dis. 3, 391-400.   DOI
57 Gariano, R.F., and Gardner, T.W. (2005). Retinal angiogenesis in development and disease. Nature 438, 960-966.   DOI
58 Gerber, H.P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V., and Ferrara, N. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336-30343.   DOI