• 제목/요약/키워드: signal-to-interference-plus-noise ratio

검색결과 154건 처리시간 0.024초

Performance Analysis of Array Processing Techniques for GNSS Receivers under Array Uncertainties

  • Lee, Sangwoo;Heo, Moon-Beom;Sin, Cheonsig;Kim, Sunwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권2호
    • /
    • pp.43-51
    • /
    • 2017
  • In this study, the effect of the steering vector model mismatch due to array uncertainties on the performance of array processing was analyzed through simulation, along with the alleviation of the model mismatch effect depending on array calibration. To increase the reliability of the simulation results, the actual steering vector of the array antenna obtained by electromagnetic simulation was used along with the Jahn's channel model, which is an experimental channel model. Based on the analysis of the power spectrum for each direction, beam pattern, and the signal-to-interference-plus-noise ratio of the beamformer output, the performance deterioration of array processing due to array uncertainties was examined, and the performance improvement of array processing through array calibration was also examined.

A New Blind Beamforming Procedure Based on the Conjugate Gradient Method for CDMA Mobile Communications

  • Shin, Eung-Soon;Choi, Seung-Won;Shim, Dong-Hee;Kyeong, Mun-Geon;Chang, Kyung-Hi;Park, Youn-Ok;Han, Ki-Chul;Lee, Chung-Kun
    • ETRI Journal
    • /
    • 제20권2호
    • /
    • pp.133-148
    • /
    • 1998
  • The objective of this paper is to present an adaptive algorithm for computing the weight vector which provides a beam pattern having its maximum gain along the direction of the mobile target signal source in the presence of interfering signals within a cell. The conjugate gradient method (CGM) is modified in such a way that the suboptimal weight vector is produced with the computational load of O(16N), which has been found to be small enough for the real-time processing of signals in most land mobile communications with the digital signal processor (DSP) off the shelf, where N denotes the number of antenna elements of the array. The adaptive procedure proposed in this paper is applied to code division multiple access (CDMA) mobile communication system to show its excellent performance in terms of signal to interference plus noise ratio (SINR), bit error rate (BER), and capacity, which are enhanced by about 7 dB, ${\frac{1}{100}}$ times, and 7 times, respectively, when the number of antenna elements is 6 and the processing gain is 20 dB.

  • PDF

선형 제한 조건을 갖는 광대역 빔 형성기의 출력 SINR (The Output SINR of the Linearly Constrained Broadband Beamformer)

  • 곽병재;김기만;차일환;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • 제13권2E호
    • /
    • pp.14-19
    • /
    • 1994
  • 본 논문에서는 벡터적 접근 방법을 이용하여 noncoherent 상황에서 선형 제한 조건을 갖는 광대역 빔 형성기의 출력 SINR식을 도출하였다. 여기서 입사되는 광대역 신호들은 평탄한 스펙트럼을 갖는다고 가정하였다.

  • PDF

Maximizing Network Utility and Network Lifetime in Energy-Constrained Ad Hoc Wireless Networks

  • Casaquite, Reizel;Hwang, Won-Joo
    • 한국통신학회논문지
    • /
    • 제32권10A호
    • /
    • pp.1023-1033
    • /
    • 2007
  • This study considers a joint congestion control, routing and power control for energy-constrained wireless networks. A mathematical model is introduced which includes maximization of network utility, maximization of network lifetime, and trade-off between network utility and network lifetime. The framework would maximize the overall throughput of the network where the overall throughput depends on the data flow rates which in turn is dependent on the link capacities. The link capacity on the other hand is a function of transmit power levels and link Signal-to-Interference-plus-Noise-Ratio (SINR) which makes the power allocation problem inherently difficult to solve. Using dual decomposition techniques, subgradient method, and logarithmic transformations, a joint algorithm for rate and power allocation problems was formulated. Numerical examples for each optimization problem were also provided.

중위수를 이용한 새로운 간섭 공분산 행렬의 예측이 적용된 Space-Time Adaptive Processing에 대한 연구 (Study on Space-Time Adaptive Processing Based on Novel Clutter Covariance Matrix Estimation Using Median Value)

  • 강성용;정지채
    • 한국전자파학회논문지
    • /
    • 제21권1호
    • /
    • pp.20-27
    • /
    • 2010
  • 본 논문은 space-time signal processing(STAP)의 신호 모델과 불균일한 클러터 환경을 제시하고 이를 극복하고자 연구된 nonhomogeneity detector(NHD)의 사용 이후에도 일어나는 심각한 성능 저하를 극복하고자 중위수(median)를 이용한 간섭 공분산 행렬의 새로운 예측 방법을 제시하였다. 또한 대각 로드(diagonal loading)를 적용하여 고유값(eigen value) 특성을 개선시켰으며 signal to interference plus noise ratio(SINR) 손실을 계산하여 비교하였다. 마지막으로 modified sample matrix inversion(MSMI) 통계량으로 목표물 검출 능력을 비교한 결과 제시된 방법이 평균값(average)으로 정의된 기존의 방법보다 우수한 성능을 보임을 확인하였다.

ESPRIT에 의한 공간 채널응답 추정치에 기초를 둔 방향구속 전력 최소화법과 제로포싱 알고리즘의 성능평가 (Performance Analysis of DCMP and ZF based on Spatial Channel Response Estimation by ESPRIT)

  • 정중식;임정빈;안영섭
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 추계공동학술대회논문집
    • /
    • pp.169-174
    • /
    • 2002
  • 방향구속 전력최소화법(Directionally Constrained Minimization of Power : DCMP)과 제로포싱방법(Zero Forcing : ZF)은 어레이 안테나에 수신된 신호들로부터 채널응답 백터인 Spatial Signature를 추정하고, 이를 이용하여 최적웨이트(Optimal Weight)를 결정함으로써 어레이 출력SINR(Signal to Interference plus Noise Ratio)을 향상시킬 수 있는 알고리즘들로 알려져 있다. 본 논문에서는 이 동국 주변에서 다중산란된 수신신호들이 어레이 안테나에 수신되는 환경에서 DCMP와 ZF방법의 성능을 분석하였다. 이를 위하여 ESPRIT를 이용하여 수신신호들의 도래각(Direction of Arrival: DOA)과 확산각도(Angular Spread: AS)를 추정하여 Spatial Signature를 구한 후, 그 결과치를 이용하여 DCMP와 ZF방법으로 어레이 출력신호를 합성하였다. 모의 실험을 통하여 어레이 출력 SINR 성능을 평가하고 이론저거 성능결과와 비교하였다.

  • PDF

A Rapid Convergent Max-SINR Algorithm for Interference Alignment Based on Principle Direction Search

  • Wu, Zhilu;Jiang, Lihui;Ren, Guanghui;Wang, Gangyi;Zhao, Nan;Zhao, Yaqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1768-1789
    • /
    • 2015
  • The maximal signal-to-interference-plus-noise ratio (Max-SINR) algorithm for interference alignment (IA) has received considerable attention for its high sum rate achievement in the multiple-input multiple-output (MIMO) interference channel. However, its complexity may increase dramatically when the number of users approaches the IA feasibility bound, and the number of iterations and computational time may become unacceptable. In this paper, we study the properties of the Max-SINR algorithm thoroughly by presenting theoretical insight into the algorithm and by providing the potential of reducing the overall computational cost. Furthermore, a novel IA algorithm based on the principle direction search is proposed, which can converge more rapidly than the conventional Max-SINR method. In the proposed algorithm, it searches along the principle direction, which is found to approximately point to the convergence values, and can approach the convergence solutions rapidly. In addition, the closed-form solution of the optimal step size can be formulated in the sense of minimal interference leakage. Simulation results demonstrate that the proposed algorithm outperforms the conventional minimal interference leakage and Max-SINR algorithms in terms of the convergence rate while guaranteeing the high throughput of IA networks.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • 제13권4호
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

공간 필터를 이용한 수중음향통신의 인접 심볼 간 간섭 완화 (Mitigation of Inter-Symbol Interference in Underwater Acoustic Communication Using Spatial Filter)

  • 엄민정;박지성;지윤희;김재수
    • 한국음향학회지
    • /
    • 제33권1호
    • /
    • pp.48-53
    • /
    • 2014
  • 수중음향통신은 시변동성으로 인하여 도플러 편이를 발생하고, 다중경로로 인하여 지연 확산의 특성을 갖는다. 이러한 채널 특성은 인접 심볼 간 간섭을 발생시켜 통신 성능을 저하시킨다. 통신 성능을 개선하기 위하여 시역전, 공간 다이버시티, 위상 추정기 및 등화기 등과 같은 다양한 기법이 연구되고 있다. 본 논문에서는 시변동성 다중경로로 인한 인접 심볼 간 간섭을 완화하는 방법으로 빔 형성 기반의 공간 필터 기법을 제안한다. 제안된 기법은 원하는 신호방향으로 빔을 조향하여 공간상의 신호를 분리하고, 배열 이득으로 신호 대 간섭 잡음비를 향상시키고 통신 성능을 개선한다.