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Maximizing Network Utility and Network Lifetime
in Energy-Constrained Ad Hoc Wireless Networks

Reizel Casaquite*, Associate Member, Won-Joo Hwang** Lifelong Member

ABSTRACT

This study considers a joint congestion control, routing and power control for energy-constrained wireless
networks. A mathematical model is introduced which includes maximization of network utility, maximization of
network lifetime, and trade-off between network utility and network lifetime. The framework would maximize
the overall throughput of the network where the overall throughput depends on the data flow rates which in
turn is dependent on the link capacities. The link capacity on the other hand is a function of transmit power
levels and link Signal-to-Interference-plus-Noise-Ratio (SINR) which makes the power allocation problem
inherently difficult to solve. Using dual decomposition techniques, subgradient method, and logarithmic

transformations, a joint algorithm for rate and power allocation problems was formulated. Numerical examples

for each optimization problem were also provided.
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I . Introduction

Implementing ad hoc wireless networks poses
many technical challenges due to the constraints
imposed by the environment. The wireless
communication channel is a scarce resource, a
shared medium and interference-limited. In order to
achieve high end-to-end throughput and efficient
resource utilization, congestion control, routing and
scheduling need to be jointly designed"’. Thereby,
a mathematical framework is proposed in this paper
which maximizes the network utility by routing
flows from sources to destinations; where at each
link the aggregated flow rate cannot exceed the
link rate capacity. The link rate capacity is a
function of Signal-to-Interference-plus-Noise-Ratio
(SINR) which in turn is a function of all nodes’
transmission powers. The joint optimization problem
is decomposed into two sub-problems: a rate and
congestion control problem at the transport and
network layers and radio resource or power

allocation problem at the MAC and PHY layers.

By optimization decomposition, the original
problem is decomposed into subproblems which
are coordinated by a master problem through
message passingm. A decomposition technique
could be classified into primal or dual. The
primal decomposition is based on decomposing
the original problem by partitioning the variables
into two sets, optimizing over one set of variables
and then over the remaining set. A dual
decomposition on the other hand, decomposes the
dual problem or the Lagrange equivalent with
respect to the coupling constraints™.

The contributions of this paper are as follows:
A joint algorithm for maximizing network utility
and network lifetime of an energy-constrained
wireless network involving parameters from the
physical, MAC, network and transport layers was
formulated. The joint optimization problem is
related to the works of Chiang [3, 4] in which
other power levels and TCP windows sizes are
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optimized. In our paper, we extend it to routing
and allocating flows at the network layer. We
have also characterized the trade-off between
network utility and lifetime.

This paper is organized as follows: Sec. 2
presents the related works while Sec. 3 presents
the system model. It consists of assumptions,
network flow model, and capacity and energy
constraints. In Sec. 4, the utility maximization
problem is solved where the optimal data rate is
obtained via dual decomposition while the feasible
transmission power vector is solved via logarithmic
transformation. A linear programming (LP) problem
that maximizes network lifetime is presented in
section 5. The trade off between network utility
and lifetime is presented in Sec. 6 where a weighing
factor is introduced to balance both objectives.
Numerical analyses for the optimization problems are
presented in Sec. 7. Sec. 8 concludes this paper.

I. Related Works

The Open Systems Interconnect (OSI) 7-layer
model remains the reference model that attempts to
abstract features common to all approaches in data
communications. It divides the overall networking

task into layers and defines a hierarchy of services

to be provided by the individual layers. It organizes
the layers into modules in such a way that each
layer only worries about the layer directly above it
and the one below it. This approach has been
successful that it provides modularity and
standardization in wireline networks but it might be
unsuitable to wireless networks domain.

With layering as the general principle and
reasons for the enormous success of data networks,
there is a little quantitative understanding to guide
a systematic process of designing layered protocol
stack for wired and wireless networks. The authors
in [5] presented a survey of the recent efforts
towards a systematic understanding of “layering” as
“optimization decomposition” where the overall
communication network is modeled by a
generalized network utility maximization problem.

Wireless links create several new problems for
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protocol design that cannot be handled well in the
framework of the layered architecture. Moreover,
wireless networks offer several possibility for
opportunistic  communication that cannot be
exploited sufficiently in a strictly layered design.
The wireless medium offers some new modalities
of communication that the layered architecture
cannot accommodate. Hence, more researchers
present cross layer design ideas by exploiting the
dependence between protocol layers to obtain
performance gains [1], [6], [7], [8], and [9].

Cross-layer protocol interactions, is particularly
important for any network since the physical
medium vary significantly over time and when used
appropriately can increase network efficiency. The
information exchange among layers can even
optimize network throughput. In addition, the
inflexibility and sub-optimality of layered architecture
design usually result to a poor performance of a
network, especially when energy is a constraint or
the application has high bandwidth needs, and/or
stringent delay constraints. According to Goldsmith
et al [1], to meet the above requirements, a
cross-layer protocol design that supports adaptivity
and optimization across multiple layers of the
protocol stack is needed. A desirable solution to the
problem of achieving optimal transmission throughput
includes a routing strategy of data flows at the
network layer, as well as power allocation scheme
that leads to the high capacity of the physical
layerm.

This study considers a joint congestion control,
routing and power control for energy-constrained
wireless networks. Unlike other papers, we
introduced a mathematical model which includes
maximization of network utility, maximization of
network lifetime, and trade-off between network

utility and network lifetime.

If. System Model

3.1 Assumptions

The topology of a network is represented by a
directed graph G(N,L) where N denotes the set of
all nodes and L is the set of links between those
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nodes. A communication link /€L is denoted by
an active direct communication pair (i,j) where i
is the transmitting node and j is the receiving
node. Furthermore, a source node is denoted by s
and a destination node is denoted by d.
Scheduling in the data link layer decides which
links will transmit and when to transmit. It is
similar to choosing an independent set of flow
contention graph to be active at each time slot.
When link / is active, node i and node j cannot
transmit to other nodes or receives from other
nodes. Given a contention graph, a maximal
clique [10] could be identified and flows
within same maximal clique cannot transmit
simultaneously but flows in different cliques
may transmit simultaneously. A maximal clique
in the link contention graph denotes the distinct

contention region where at any time only one link

(./))€L can be in transmission. Hence, only
links that are in different cliques can transmit
simultaneously.

3.2 Network Flow Model
The network topology can be then represented by
a node-link incidence matrix [11}] A &RNxL whose

entry Ay; is associated with node and link via

! 1 if nisthe start node of linkl
Ay =+ —1 if nistheend nodeof linkl (1)
0  otherwise

On each link, we let fI(d) >0 be the amount of
flow destined for node d and we let f =54 Ad)
be the total amount of traffic on link L We
define a source-sink vector [12] x(d) ERN whose
nth entry xn(d)=RN denotes the non-negative
amount of flow (data rate in bits/second) injected
or removed into the network at a node n which
is destined for node d. At each node n, the
components of the flow vector and the
source-sink vector with same destination satisfy
the flow conservation flow.

s [AD g @@

n

leO0n) ! lei(n) ! 2)

The flow conservation law across the network

can be written as

AFD =2, d=1:-D 3

3.3 Capacity Constraint

We define the link capacity as a function of
transmit power and SINR. We let SINR(P) be the
measured SINR at link [ where P={P;, Py,
Pylis the transmission power vector of the
transmitting nodes. Furthermore, we denote Gy as
the link gain of transmitter i and its intended
receiver j on same link /, and Gy as the link
gain of other transmitter which is on link & to
the receiver on link /. We assume a symmetric
hearing matrix among the nodes and the channel
gain between two nodes is approximately same in
both directions. Gain can be computed as Gijoc
dij-a where a is the path loss. We let o as the
thermal noise at the receiver node of link [ A
transmission is only successful if the SINR at the
link satisfies the given threshold A as denoted by
the following equation.

f)IGII }—ﬂ/
z PG, +0, @)

1%k

SINR (P) =

The Shannon formula [13] which represents the
theoretical maximum rate that can be achieved
over a frequency bandwidth W, assuming presence

of Gaussian noise and intetference is given by
c,(P)y=Wlog,(1+ SINR (P)) 3)

So, the link capacity is a function of SINR,
which in turn is determined by the power levels
at all transmitters. Due to interference in wireless
networks, increasing the capacity on one link
reduces those on the other links.

3.4 Energy Constraint
For N number of nodes, we assume that each
node has an initial battery of E, We denote the

transmission energy consumed by node i to node

j on link [ as e’;j and the energy consumed by
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Table 1. Summary of Notations.

Parameters (Description

c.(l Capacity of link 1
SINRI(P) [Measured SINR at link 1|
Bl SINR Threshold

P |Transmit power on link 1 for destination d

xn(d) |[Source rate of node n for destination d
fl(d) Flow rate on link 1 for destination d

fl Aggregate flow on link 1

Amount of information transmitted from

J}(d)

! node i to node j until time T.

A Congestion price on link 1

é Step-size for convergence

el Transmission energy consumed by node i
“  |to node j on link 1

o Energy consumed by the receiver node j
” during reception

E, Initial energy of node n

Y Trade-off weighing factor

the rteceiver node j during reception as e);. The
information to be transferred to the sink node d

is generated at the source node at a rate of
acn(d) > 0. We then introduce a total energy
constraint as (6) which states that the energy
consumed during transmission and reception (for

each flow) should not exceed the initial energy of
the node, E,.

ey D+ e LN <E,

el 1c0(n) 1L 1elm) (6)

Table 1 summarizes some parameters and
notations used in this paper.

IV. Maximizing Network Utility

4.1 Problem Formulation

Utility functions provide metric that define
optimality and efficiency of resource allocation.
Hence, we make use of utility function for our
problem. We assume that each node attains utility

when it transmits at a rate of zsld) for destination

d where Urfd) is assumed to be continuously
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differentiable, increasing, and concave. We assume
that all utility functions are logarithmic and
additive.

In addition, the link capacity is dependent on
the link SINR which in turn is dependent on the
transmit power of the nodes. Our maximization

problem can be formally written as

max Y U (x)
n

@)
subject to
Af@ = x@ ®
fh<e(P) ©)
0< P < PO,
Dy (M =max BUL GO E AL
£ 3@ 5 an

The constraint (8) is the network flow
constraint. We require that the aggregate rate at
any link 1 does not exceed the effective link
capacity (9). The constraint (10) is the maximum
transmission power constraint ie. the link
transmission power Pl is upper bounded by Pjmax
and lower bounded by 0 for each destination d.
The last constraint (11) ensures that the flow rate
and data rate are non-negative. The optimization

variables of problem (7) are both source rate xﬁld)

and transmit power Pl(d).

We focused on the variables x, f which are
network flow variables and ¢, p which are
resource and power allocation variables. We
consider the dual problem by introducing a
Lagrange multiplier A € B only for the
constraint (9). The result is a partial Lagrangian

function given as

L(x, f,e,p,A)= >, UMDY+ A(e,(P) - 1)
=Y U+ Aa®)-D A4S
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Thus, the dual function is formulated as
D(2) =max L(x, f,c, p,A)

subject to

0_<_B(d) S}f:,z,x A = x\D (12)

The dual function can be evaluated separately
in the network variables x, f and MAC/PHY
variables ¢, p. By linecarity of the differentiation
operator, (12) could be decomposed into two
sub-problems (13) and (14), which are functions
of the transport and network layer, and MAC and
PHY layer respectively.

D(A) = Dyer (A + D ypuepny (1) (13)

where
subject to (8) and (11) and,

D yery (A1) = n}?} gz A, (P) (14)
subject to (10) and (11).

Similar to [11], we would like to interpret the

Lagrange variable A as the price per unit

bandwidth at link I, where) A f is the price to

transmit flow traffic at rate az&d) and to route it
along the network according to flow f,. The

constraints are flow conservation law i.e. traffic is

generated at rate x, at node n and without loss,

traverses the network to the destination d via all
possible paths [11]. The partial dual function
Dypr(X) is differentiable with respect to variable

(x, p) hence, the optimal source rate m; @) can be

computed as
x, (D) =U""(4) (1s)

where Ufb’i)_l is the derivative of the inverse

of the utility function. The problem (13) defines
both congestion control coupled with the routing
behavior. Congestion control is based on (15)
where the source node will adjust its rate according
to the path price while routing is based on the
minimum cost path with the link prices as costs.

On the other hand, the problem (14) is the
MAC/PHY problem for link layer flows according
to congestion price. Since the link capacity is a
global function of all interfering powers and as a
function of SINR, we rewrite the maximization
problem as

D Ay=max » A,c (P
MACPHY( ) P Z I l( ) (16)

subject to

c,(P)=W log ,(1+ SINR ,(P))
PG,
ZPkle+o-l

Ik

0<p<p

I, max

SINR ,(P) =

According to [8), there are three recent
techniques that can ease the way of solving the
feasible capacity region: dual optimization method,
geometric programming, and the game theoretic
approach. In this paper, we use the geometric
programming approach in order to solve for the
feasible solution. First, we approximate the link

capacity as W log( 1+ SINR ,(P)) = log( SINR )

W refers to the frequency bandwidth. This is
usually the case in high SINR regime. We can

then substitute it to (14); however,

> A, log( SINR ,(P))

is still a strictly concave function of a
logarithmically transformed power vector [14]. By

logarithmic transformation of a power vector ,

P, =log(P)
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the optimization problem (14) is transformed into

max Z A,6,(P)

17)
subject to
Z,(P) = log( SINR (P) v
B
SINR ,(P) = Ge . Vi
k:IGU‘e '+ o,
0<el <P, . Vn,¥le O(n)

Furthermore, Chiang had proposed a distributed
algorithm for power control problems with
inelastic link capacities where the derivations and
proofs are shown in [3] and [14]. Similar to the
Jointly Optimal Congestion Control and Power
Control (JOCP) algorithm [3] by introducing a
step size K = 0, each transmitter can update and

maximize its power by

l,(t) ﬂ[(t)Gl'
P+ =P N T AN e T
(t+1) = P(1) + & PO) ;prkcf*+aj (18)

It can be further simplified using the definition
of SINR, i.e.

P(t+1)= P,(t)+%—xz Gym (1)

1 J#l
where m;(t) are the messages passed from node

j or the intended receive of node i, defined as

- A,(1)SINR (¢)
" E TR G, (19)

The gradient-based optimization of a function
with constant step size Kk is guaranteed to
converge if the function has a Lipschitz continuity
property:

||Vf($1) -V (552)” = L||171 ~$2||

1028

At time t:

1.Each intermediate node implicitly updates its price
with respect to the destination d
Aa+D =[O+, —e @)

and passes this price to all its neighbors.

2. Congestion Control: each source node n adjusts its sending
rate for a period of t according to local

congestion price.

O =U""(4@®)

3. Power Control: over link, I'€(i,]) an amount of data
will be transmitted to destination d at a transmit

power defined by the given equation [4]

_ KA
Rt+)=P@®)+ 20 K;G/jmj(t)

where
m (1) = A;()SINR (1)
’ P0G,

4. Routing: The data will be sent at a rate determined

by a scheduling algorithm.
Fig. 1 The Joint Algorithm.

for some L > 0, and the step size is small
enough: €<k < (2—€)/L for some >0.
This convergence condition was already verified
by ‘Chiang as given in [14].

By subgradient method [15], we can obtain a
sequence of dual feasible points or the price
adjustment for link L

M) =40+ 8,(f -, (P)]” (0

where [.]+ denotes projection on closed convex
set R+ or a set of non negative real number. The
Lagrange multiplier can be updated using (20)
where 0 is a positive scalar step-size. From
equations (15), (18), (19) and (20) we are able to
formulate our joint algorithm, as given by Fig. 1

below.

V. Maximizing Network Lifetime

If power control is implemented between links,

ie. the transmit power used is the minimum
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energy required just to reach the destination node,
the energy consumption rate per unit information
transmission depends on the choice of the next
hop node or simply the routing decision. Hence,
routing plays a significant role in maximizing
system lifetime. As node sends, receives or
forwards packets, the energy of a node is reduced
and once the energy level falls below a threshold,
the node suffers shutdown and eventually die.
Hence, energy related metrics should be taken
into consideration in designing ad hoc routing
protocols. Chang and Tassiulas [16] proposed an
algorithm that balances the flows among different
routes in such a way that the time before the
batteries would drain out is maximized. To
maximize the life of all nodes and the network
itself, the path to be selected must consider
energy reserves such that nodes with depleted
energy reserves do not lie along many paths.
Hence, traffic should use routes with sufficient
remaining energy to maintain balance in the
network. Based on the model mentioned in Sec. 3

and similar to [16], we define the network

lifetime of a node under a given flow f l(d) as

E

A Y YTLES Y Wi

i 1e0(n) / Iel(n) 2D

We define that the network lifetime under flow
f is defined by the node which has the minimum

lifetime among other nodes in the network i.e.

T (f)=minT,(f) @2

We let zﬁ,‘,” be the rate at which information is

generated at node nand this information needs to
be communicated to the sink node. Our goal is to
find the flow that maximizes the system lifetime
under the flow conservation condition. Our
problem can be then written as

max T

vt () (23)

subject to

Zflu) +xid) _ Zfl(d)

leO(n) lel(n) (24)
t p(d) ror(d)
Z e, [+ Z e ;" <E,
leO(n) lel(n)

fl <¢(P)

d d
£920,x20

Our goal here is to maximize the system

lifetime i.e. maximize 7). (f). Equivalently, the

maximization problem can be written as a linear
. . 7y _ (d)
programming problem if we let /i =1,

where /" is the amount of information
transmitted from node i to node j until time T.
Thus, maximizing the system lifetime s
equivalent to maximizing the amount of total
information transfer given a fixed information-
generation rate [16]. Note that the variable T in
the constraints is an independent variable which
makes the optimization problem an LP problem.
We can interpret it as minimizing the maximum
ratio of power consumption to energy supply at
each node [16]. Hence, our optimization problem

for system lifetime maximization is formulated as

max T 25)
subject to
7 7(d)
Z]’,(’”+Tx,(,‘”: Zfl
1e0 (n) lel(n) (26)
7 (d rop(d)
YoV Y eV <E,
1e0(n) lel(n)
Fl<e,(PYT

2 (d) (d)
9 20,x,20

The first constraint is the flow conservation
condition. The second constraint is total energy
constraint, while the third constraint is capacity

constraint, i.e. the link capacity should not exceed
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the maximum achievable link capacity, and the
last constraint is to ensure that the transmitted

data is non-negative.

VI. Network Utility and Lifetime
Trade-Off

In wireless sensor networks, each sensor node
has an extremely limited power supply, and for
this reason, they require lightweight communication
protocols as well. However, the performance of
the application layer is determined through the
network utility function, which is relative to the
amount of data gathered by the network nodes. In
order to gather more data from the energy-
constrained network nodes, higher data rates are
needed which also require high sensing and
communication capabilities for the network nodes.
Since energy is dissipated through sensing,
transmitting, and receiving data, this could shorten
the network lifetime of the nodes and the network
itself. Hence, there is an inherent trade-off
between the network utility and network lifetime
of energy-constrained wireless networks. In this
section, we discuss this said trade off.

max y» UMW )-(1-p)T

@n
subject to
Af"(d) = 5@ 28)
Fl<e,®)T
Z e 1+ Z e, 'V <E,
1eO(n) lel(n)

(d) (d)
0<P® < P,

7(d d
£920,x>0

The network should choose an appropriate
value of <y that would balance the network utility
and lifetime based on the application. v € [0,1]
is system design parameter that controls the
desired trade-off between the network utility and
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network  lifetime. =~ We  introduce  Lagrange

multipliers v; and p; for the second and third

constraints in (28). Hence, we derived the partial

Lagrange function as
D(p,v) =max L(f,x,p,c,4,0,T)

subject to

0< P <P 29)

The dual problem in (29) can be decomposed

into two main sub-problems
D, (u,0) =max y 3 U7 (x,")

; zul( e zfj
1

leO(n) lel(n)

- Z v, f !
i
subject to

Af(‘“ = x(
D,(u,0) = —max( 1= y)T + 3 pE, + 3 v,c,(P)
1

=min( 1- )T =Y #,E, =Y, v,c,(P)

f920,x4>0
subject to
(d) (d)
0<P@ < PD

which corresponds to a cross layer optimization
problem via vertical decomposition. The problem
is decomposed into rate and flow control problem
in transport and network layer, power and radio
resource allocation problem in the MAC/PHY
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layer, and a network lifetime maximization
problem. The said problems are coordinated by
the dual function (29) through dual variables
(p,v). The feasible solutions ', 7" which are
functions of f and P can be obtained by solving
the dual problems ie. solve minD(u,v). Now
we will present the primal solutions of the
optimization problem (27) as defined by (30) and
(31). By primal decomposition, we decompose the
original problem by partitioning the variables into
two sets: optimizing over one set of variables to

* L)
get T and then over the remaining set to get z.

Z,U,E + ZU, log[ G, ]

I = are max z PG, +0,
g P 1— 14
(30)
zy,[ e+ S ] Sof
@ arg max g 1&0tm 1eT0n) 7
" f~ﬂ~v” Y
3D

VI. Numerical Analysis and
Examples

We solved the LP problem for maximizing
system lifetime using MATLAB. We define our
simulation topology as shown in Fig. 2. We
assume that there are two network layer flows:

Flow 1: A—>C~>D—>F and Flow 2: B—™>D
—>E. We focused on the problem of computing

a flow that maximizes network lifetime which is
taken to be the time at which the first node runs

out of energy. The transmitting node can reach

AN T
4 Cre 8 —— E\/‘ =% Flow2
e .
s N o
e 4 g
ﬁ\’ LK
Slow 1> (A 3 >} 10
™ o
« 5 ]
2 .
AV , N
b ™

e —— = F > Flow 1
Flow2-—» .o 7

Fig. 2 Simulation Topology.

the nodes directly within its communication range
dy. For simplicity of analysis we assume that all
nodes have equal distances and initial energies E;
The energy expenditure per unit information
transmission ~ from node i to j  are

T , .
eﬁj =e¢ +€um d?j and e}, = e for transmission

and reception respectively, where el = 50nJ/bit

and € =150nJ/bit. These values are the
energy consumed in the transceiver circuitry at
the transmitter and receiver respectively while
€ wmp™ 100pJ/bit /m* is the energy consumed
at the output transmitter antenna for transmitting
one meter.

We showed the relationship of transmission range
to the normalized network lifetime in Fig. 3. Note
that we have defined the network lifetime under the
flow f to be the time until the first node runs out

of energy. The normalized lifetime is the ratio of the

095 ‘ . . J
094 T

oo
0w
D »

L L
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Fig. 3 Relationship of distance to the normalized network
lifetime.
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Fig. 4 Relationship of the amount of information transferred
on link (i,j) and delay.
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Fig. b Trade-off between network utility and network
lifetime.
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-
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o o o
£ o} [ -

o
N

0

o] 02 04 06 08 3
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Fig. 6 Utility and Lifetime as a function of gamma .

network lifetime to the optimal solution. It is
similar to minimizing the maximum ratio of power
consumption to the energy supply of the node.
Based on our simulation, as the transmission
range between nodes increases, the transmission
and reception energy expenditure of node also
increases, which leads to a short network lifetime.

Maximizing system lifetime is equivalent to
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maximizing the amount of total information
transfer given fixed information-generation rates.
As can be seen in Fig. 4, link 9 has a lesser
amount of transferred information due to the fact
that node D also acts a router too for node E.
Using same topology (Fig. 2), we directly solve
the primal optimization problem (27) in MATLAB,
with utility function U () = log, (z{*). We
have varied v from 0.05 to 0.95. Fig. 5 shows
the inherent trade-off between the utility and
lifetime in energy-constrained wireless networks
while Fig. 6 shows the utility and lifetime of
each node as a function of 7. Hence, depending
on the desired application, the system designer
can choose an optimal operation point for the
operation by choosing the appropriate value of -y
and by solving the problem (27) for the optimal

set of system variables.
VI. Conclusion

We have formulated and solved optimization
problems for maximizing network utility, network
lifetime and trade off of network utility and
lifetime, for energy-constrained wireless networks
involving parameters from the physical, MAC, and
network and transport layers, showing that
interaction among different layers of the protocol
stack is necessary to achieve performance gains.
We have used techniques in convex optimization
to solve our problem. We have also provided

numerical examples for our optimization problems.
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