• Title/Summary/Keyword: sidewall

Search Result 348, Processing Time 0.02 seconds

Effect of Dopants on Cobalt Silicidation Behavior at Metal-oxide-semiconductor Field-effect Transistor Sidewall Spacer Edge

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.871-875
    • /
    • 2001
  • Cobalt silicidation at sidewall spacer edge of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) with post annealing treatment for capacitor forming process has been investigated as a function of dopant species. Cobalt silicidation of nMOSFET with n-type Lightly Doped Drain (LDD) and pMOSFET with p-type LDD produces a well-developed cobalt silicide with its lateral growth underneath the sidewall spacer. In case of pMOSFET with n-type LDD, however, a void is formed at the sidewall spacer edge with no lateral growth of cobalt silicide. The void formation seems to be due to a retarded silicidation process at the LDD region during the first Rapid Thermal Annealing (RTA) for the reaction of Co with Si, resulting in cobalt mono silicide at the LDD region. The subsequent second RTA converts the cobalt monosilicide into cobalt disilicide with the consumption of Si atoms from the Si substrate, producing the void at the sidewall spacer edge in the Si region. The void formed at the sidewall spacer edge serves as a resistance in the current-voltage characteristics of the pMOSFET device.

  • PDF

Experimental study on the behavior of the adjacent ground due to the sidewall failure in a shallow tunnel (얕은터널에서 측벽파괴시 주변지반 거동에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.871-885
    • /
    • 2017
  • Nowadays, the construction of tunnels with a shallow depth drastically in urban areas increases. But the effect of sidewall displacement in shallow tunnel on its behavior is not well known yet. Most studies on the shallow tunnel have been limited to the stability and the failure of the tunnel and the adjacent ground in plane strain state. Therefore, the model tests were conducted in a model ground which was built with carbon rods, in order to investigate the impact of the tunnel sidewall displacement on the lateral load transfer to the adjacent ground. The lateral displacement of the tunnel sidewall and the load transfered to the adjacent ground were measured in model tests for various overburdens (0.50D, 0.75D, 1.00D, 1.25D). As results, if the cover depth of tunnel was over a constant depth (0.75D) in a shallow tunnel, the tunnel sidewall was failed with a constant shape not depending on the tunnel cover depth and also not affected by the opposite side of the wall. But, if the cover depth of tunnel was under a constant depth (0.75D), the failure of the tunnel sidewall could affect the opposite sidewall. In addition, if the displacement of tunnel sidewall with 50% of the critical displacement occurred, the tunnel failure was found to be at least 75%. However, additional studies are deemed necessary, since they may differ depending on the ground conditions.

Optimization of Double Gate Vertical Channel Tunneling Field Effect Transistor (DVTFET) with Dielectric Sidewall

  • WANG, XIANGYU;Cho, Wonhee;Baac, Hyoung Won;Seo, Dongsun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.192-198
    • /
    • 2017
  • In this paper, we propose a novel double gate vertical channel tunneling field effect transistor (DVTFET) with a dielectric sidewall and optimization characteristics. The dielectric sidewall is applied to the gate region to reduced ambipolar voltage ($V_{amb}$) and double gate structure is applied to improve on-current ($I_{ON}$) and subthreshold swing (SS). We discussed the fin width ($W_S$), body doping concentration, sidewall width ($W_{side}$), drain and gate underlap distance ($X_d$), source doping distance ($X_S$) and pocket doping length ($X_P$) of DVTFET. Each of device performance is investigated with various device parameter variations. To maximize device performance, we apply the optimum values obtained in the above discussion of a optimization simulation. The optimum results are steep SS of 32.6 mV/dec, high $I_{ON}$ of $1.2{\times}10^{-3}A/{\mu}m$ and low $V_{amb}$ of -2.0 V.

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.

Optimal Design of Tire Sidewall Contours for Improving Maneuverability and Durability (조정성과 내구성 향상을 위한 타이어 측벽형상 최적설계)

  • Jo, Jin-Rae;Jeong, Hyeon-Seong;Lee, Hong-U;Kim, Nam-Jeon;Kim, Gi-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1636-1643
    • /
    • 2001
  • Automobile maneuverability and tire durability are significantly influenced by the sidewall tire contour. In order to improve these tire performances, it is very important far one to determine a sidewall contour producing the ideal tension and strain-energy distributions. However, these requirements can nut be simultaneously achieved by conventional non-interactive multi-objective optimization methods based on mathematical programming, because these exhibit the conflicting behavior each other, with respect lo the sidewall contour. Therefore, we execute the tire contour optimization fur improving the maneuverability and the tire durability using satisficing trade-off method.

Chemical Mechanical Polishing Characteristics of BTO Thin Film for Vertical Sidewall Patterning of High-Density Memory Capacitor (고집적 메모리 커패시터의 Vertical Sidewall Patterning을 위한 BTO 박막의 CMP 특성)

  • Ko, Pil-Ju;Park, Sung-Woo;Lee, Kang-Yeon;Lee, Woo-Sun;Seo, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.116-121
    • /
    • 2006
  • Most high-k materials are well known not to be etched easily, Some problems such as low etch rate poor sidewall angle, plasma damage, and process complexity were emerged from the high-density DRAM fabrication. Chemical mechanical polishing (CMP) by a damascene process was proposed to pattern this high-k material was polished with some commercial silica slurry as a function of pH variation. Sufficient removal rate with adequate selectivity to realize the pattern mask of tera-ethyl ortho-silicate (TEOS) film for the vertical sidewall angle were obtained. The changes of X-ray diffraction pattern and dielectric constant by CMP process were negligible. The planarization was also achieved for the subsequent multi-level processes. Our new CMP approach will provide a guideline for effective patterning of high-k material by CMP technique.

Lateral nasal advancement flap for reconstruction of the nasal sidewall and dorsum

  • Ogawa, Yutaka;Ogawa, Yasuko
    • Archives of Plastic Surgery
    • /
    • v.47 no.1
    • /
    • pp.102-105
    • /
    • 2020
  • Malignant skin tumors and precancerous lesions have a predilection to be located in the nasal dorsum or sidewall. Although invasive reconstructions have been presented, no simple and suitable method has yet been reported for this area. The flap presented herein, named the lateral nasal advancement flap, is designed on the adjacent lateral region of the sidewall or nasal dorsum and advanced in the medial direction. Two Burow's triangles are removed in the upper and lower portions of the flap: the upper triangle along the nasofacial sulcus and the lower triangle along the nasofacial sulcus and/or the alar groove. Excellent results were obtained in the two clinical cases described in this report. Neither a trap door deformity nor dog-ears developed in either case. The postsurgical scars followed the aesthetic lines and became inconspicuous. A distinct angle was formed in the nasofacial sulcus without anchor sutures. This surgical procedure is technically simple and is performed under local anesthesia. Although the flap is a cheek-based advancement flap, postsurgical scars do not remain in the cheek; instead, they are located in the nasofacial sulcus and alar groove. The lateral nasal advancement flap is recommended for reconstruction of the nasal sidewall and dorsum.

A study on the change of thickness according to material change of water purifier cold and hot water tank cylindrical drawing products (정수기 냉온수 탱크 원통형 드로잉 제품의 재질 변화에 따른 두께 변화에 관한 연구)

  • Jang, Eun-Jeong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.13-18
    • /
    • 2021
  • In plate forming technology, cylindrical drawing process is widely used in industry due to technological development. In this study, we used stainless steel 3042B and stainless steel 304J1, which are the most commonly used materials in the production of cold and hot water tanks for water purifiers, among cylindrical drawing products. Under the same conditions, the thickness of the sidewall of the product formed by drawn experiment was studied. As a result of the experiment, the bottom thickness of stainless steel 304J1 was considered to be thick. It is judged that the defect rate can be reduced by changing the breaking phenomenon of the floor surface of the cold and hot water bottles to the material of stainless steel 304j1. Stainless steel 304 2B material shows a sharp change in thickness from punch corner R to sidewall position, while stainless steel 304J1 material showed a uniform change from punch corner R to sidewall position. Stainless steel 304J1 material is considered to improve the clamping of the product in the process of extracting the product after hand drawing. The appearance of stainless steel 3042B products is considered to produce more wrinkles in the flange, which exerts greater tensile force on the sidewall during molding, resulting in uneven sidewall thickness.

A Study on Variation of the Sidewall Angle of a Thick Photoresist on the Wavelength and the Proximity gap (노광파장과 근접거리에 따른 두꺼운 감광막의 측면기울기 변화에 관한 연구)

  • 한창호;김학;김현철;전국진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.27-30
    • /
    • 2004
  • In this work, the variation of the sidewall profile of a thick photoresist on the wavelength and proximity gap was investigated. PMER P-LA900PM, DNQ (DiazoNaphthoQuinone) novolac type photoresist, is used for experiments. The calculated results agreed well with the experimental results.

  • PDF

Development of Prediction Model for Sidewall Curl in Sheet Meta1 Forming(II)-Experimental Validation (박판성형시 컬 예측모델 개발(II)-실험적 검증)

  • Joo, B.D.;Park, H.K.;Kim, D.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.438-442
    • /
    • 2007
  • Sidewall curl is the curvature that results from non-uniform through-thickness strain present in the sheet stamping process which involves material flow over a die radius. In order to understand and control curl for tight fit-up tolerances, an analytical model that can provide a reliable measure for the amount of curl would be very helpful. In this study, a model is developed based on the moment-curvature relationship during bending-under-tension operations. For the verification of analytical model, sidewall curl is experimentally measured after deformation of a strip using a bending-under-tension test system. The results show a consistent relationship between the theoretically predicted value and the experimentally obtained one, especially in regions of high curl.