• Title/Summary/Keyword: siderophore A3

Search Result 84, Processing Time 0.023 seconds

Biochemical studies of the siderophore A3 produced by pseudomonas synxantha A3 (Pseudomonas synxantha A3가 생성하는 siderophore A3에 관한 연구)

  • 전홍기;강호영;고철종;백형석
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.307-313
    • /
    • 1991
  • A yellow-green, fluorescent siderophore A3 was extracellularly produced under iron-limited growth conditions from Pseudomonas synxantha A3. The physicochemical and biological properties of siderophore A3 were examined. The approxiamte molecular weights of the Fe(III)-siderophore A3-1 complex and Fe(III)-siderophore A3-2 complex were estimated to be about 1,300 and 1,100, respectively, by Bio-gel P2 gel exclusion chromatography. The molar ratio between the siderophore and the Fe(III)was 1.08 mole. The molecular weight of the complex could be calculated with this ratio and the new values were 1,150 and 960, respectively. The binding constant(K) between thesiderophore A3 and Fe(III) that determined by displacing the iron from the Fe(III)-siderophore complex with EDTA was 4.12*10$^{18}$ at pH 5.0. Siderophore A3 appeared to have antibacterial activity on several bacterial strains, however, ferric siderophore Ae complex did not show that activity. The cytotoxicity of siderophore A3 was obtained from Human Chronic Myelogenous Leudemia K562 cells. Inhibition concentration (50%)($IC_{50}$ ) was $0.17\mu$\{g/ml}.

  • PDF

$Pyoverdin_{2112}$ of Pseudomonas fluorescens 2112 Inhibits Phytophthora capsici, a Red-Pepper Blight-Causing Fungus

  • Kim, Sang-Dal;Lee, Eun-Tag;Lim, Si-Kyu;Nam, Doo-Hyun;Khang, Yong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.415-421
    • /
    • 2003
  • A bacterium, Pseudomonas fluorescens 2112, that is antagonistic against a red-pepper blight-causing fungus, Phytophthora capsici, was isolated from the local soil of Gyongju, Korea. This strain formed an orange-colored clear halo zone on chrome azurol S (CAS) blue agar, suggesting the production of a siderophore in addition to an antifungal antibiotic. The optimal culture conditions for siderophore production by P. fluorescens 2112 were 30-h cultivation at $25^{\circ}C$ and pH 6.5 in King's B medium. The presence of $20{\mu}g/ml\;of\;Fe^3+$ ion or EDDHA promoted the production of siderophore in King's B medium. The siderophore was purified from culture broth by CM-Sephadex C-25 and Sephadex G-25 column chromatographies. The UV spectra of the purified siderophore was the same as that of pyoverdins or pseudobactins. The molecular mass was 1,958 Da determined by FAB-rlass spectrometer, and the amino acid composition analysis showed that the purified siderophore consisted of glycine/threonine/serine/glutamic acid/alanine/lysine with the molar ratio of 3:2:1:1:1:1, DL-Threo-${\beta}$-hydroxyaspartic acid and $N^{\delta}$-hydroxyornithine, two of the essential constituents of pyoverdin, were also found. The purified siderophore pyoverdin showed strong in vitro and in vivo antagonistic activities against phytophthora blight-causing P. capsici. Especially in an in vivo pot test, the siderophore protected red-pepper Capsicum annum L. very well from the attack of P. capsici. These results indicated that the purified siderophore of P. fluorescens 2112 played a critical role in the biocontrol of the red-pepper blight disease, equivalent to treatment by P.fluorescens 2112 cells.

Structural Identification of $Siderophore_{AH18}$ from Bacillus subtilis AH18, a Biocontrol agent of Phytophthora Blight Disease in Red-pepper (Bacillus subtilis AH18의 고추역병 방제능과 $Siderophore_{AH18}$의 구조분석)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.326-335
    • /
    • 2008
  • The siderophore ($siderophore_{AH18}$) of Bacillus subtilis AR18 was determined to be one of catechol type and purified by using Amberlite XAD-2, Sephadex LR-20 chromatography, and reversed-phase RPLC. The $Siderophore_{AH18}$ was identified bacillibactin with its structure by GC-MS, $^1H$-NMR, and $^{13}C$-NMR. $Siderophore_{AH18}$ (bacillibactin) had been confirmed its molecular weight of 883 and chemical structure of $(2,3-dihydroxybenzoate-glycine-threonine)_3$. Purified $siderophore_{AH18}$ showed strong biocontrol ability towards the spore of Phytophthora capsici on PDA and able to effectively suppress (55%) P. capsici causing red-pepper blight in the pot in vivo test.

Studies on Phytotoxin in Intensively Cultivated Upland Soil III. The Abilities of Siderophore Formation, Competition and Absorption of Fe3+ and Mn2+ with Inoculation of the Fluorescence Forming Soil Bacteria and Soil Saprophytic Fungi (연작장해지토양(連作障害地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) 제(第)3보(報) Siderophore 생성(生成) Pseudomonas 속(屬) 세균접종(細菌接種) 및 양(陽) ion 첨가(添加)가 토양부생균(土壤腐生菌)의 생육(生育)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.41-47
    • /
    • 1988
  • A laboratory experiment was conducted to find out the abilities of siderophore formation and competition of $Fe^{3+}$ and $Mn^{2+}$ absorption in synthetic medium with inoculation of fluorescence forming pseudomonas and soil saprophytic fungi as Stachybotrys chatarum, Fusarium solani, and F. oxysporum. The results obtained were summarized as follows; 1. The concentration of siderophore in synthetic medium with inoculation of Pseudomonas putida pt-II was increased (with progress of incubation time). 2. The negative correlation was obtained with the increase of $Fe^{3+}$ ion concentration and siderophore in synthetic medium with inoculation of fluorescence forming pseudomonas and soil saprophytic fungi. 3. The fresh weight of fungal hyphae was decreased with the increase of siderophore in synthetic medium. 4. There was insignificant relationship between the concentration of $Mn^{2+}$ and the concentration of siderophore while the positive correlation was obtained with the increase of fresh weight of fungal hyphae.

  • PDF

Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium. (다기능 PGPR균주 Bacillus licheniformis K11이 생산하는 항진균성 Siderophore의 정제와 특성)

  • Woo, Sang-Min;Woo, Jae-Uk;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 2007
  • Previously, we isolated plant growth promoting rhizobacterium (PGPR) Bacillus licheniformis K11 which could produce auxin, cellulase and siderophore. The siderophore of B. licheniformis K11 $(siderophore_{K11})$ was determined to be a catechol type siderophore which is produced generally by Bacillus spp. B. licheniformis K11 could produce the siderophore most highly after 96 h of incubation under nutrient broth at $20^{\circ}C$ with initial pH 9.0. For the production of the $siderophore_{K11}$, trehalose and $NH_4Cl$ were the best carbon and nitrogen sources in Davis minimal medium, respectively. The $siderophore_{K11}$ was Produced in M9 medium (pH 9.0) after 4 days at $20^{\circ}C$, and purified from culture broth of B. licheniformis K11 by using Amberlite XAD-2, Sephadex LH-20 column chromatography, and reversed-phase HPLC. The $siderophore_{K11}$ had the biocontrol activity against spore germination of P. capsici and F. oxysporum on potato dextrose agar (PDA). The results indicate that the $siderophore_{K11}$ is an antifungal mechanism of B. licheniformis K11 against phytopathogenic fungi.

Antagonistic Activity of Siderophore-Producing Bacteria from Black Rice Rhizosphere against Rice Blast Fungus Pyricularia oryzae

  • Nabila, Nabila;Kasiamdari, Rina Sri
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.217-224
    • /
    • 2021
  • Rice blast caused by Pyricularia oryzae, which is a major threat to food security worldwide, markedly decreases the yield of rice. Some rhizobacteria called 'plant growth-promoting rhizobacteria' inhibit plant pathogens and improve plant growth by secreting iron-chelating siderophores. The decreased availability of iron adversely affects the survival of pathogens, especially fungal pathogens, in the rhizosphere. This study aimed to determine the morphological diversity of siderophore-producing bacteria, analyze the type of siderophores produced by the bacteria, and examine their growth-inhibitory activity against Pyricularia oryzae. The rhizobacteria were isolated from the rhizosphere of Sembada Hitam variety of black rice plants in Pakem, Sleman, Yogyakarta, Indonesia. In total, 12 distinct isolates were screened for the production of siderophores. It was found that 9 out of 12 bacteria produced siderophore and most of them were Gram positive bacteria. The best siderophore-producing isolates with different type of siderophore were used in further studies. The IS3 and IS14 isolates were found to be the best siderophore producer that produced hydroxamate and mixed type of hydroxamate-carboxylate type of siderophore, respectively. In the dual culture assay, IS14 showed a strong antagonistic effect against Pyricularia oryzae by the 81.17% inhibition.

Studies of an alcA Gene Involved in Alcaligin Siderophore Biosynthesis in Bordetella bronchiseptica (Bordetella bronchiseptica의 alcaligin siderophore 생합성 유전자인 alcA에 관한 연구)

  • Hwang, Ho-Soon;Kim, Young-Hee;Kim, Sam-Woong;Yu, Jong-Earn;Yoo, Ah-Young;Kang, Ho-Young;Lee, Tae-Ho
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1112-1118
    • /
    • 2006
  • Bordetella bronchiseptica, the agent of swine atrophic rhinitis and kennel cough in dogs, is a mucosal pathogen and produces the hydroxamate type alcaligin siderophore under iron-limited conditions. Genes involved in alcaligin siderophore biosynthesis are contained in an alcABCDE operon. In order to provide direct evidence for the role of AlcA in alcaligin biosynthesis, we needed a B. bronchiseptica mutant carrying alcA gene deletion. A 0.6 kb alcA 5'-flanking and 0.7kb 3'-flanking DNA fragments were PCR amplified with the use of pCP1.11 as a template DNA. The 5'-and 3'-flanking DNA fragments were joined in a suicide plasmid, resulting in a recombinant suicide plasmid pDM1. After introduction of pDM1 into B. bronchiseptica by conjugation, the allelic exchange technique was performed and a B. bronchiseptica alcA deletion mutant, named B. bronchiseptica H1, was obtained. The mutant strain produced reduced amount of siderophore as expected. When a plasmid containing complete alcA gene was transformed back into the mutant, the complemented mutant recovered ability of siderophore production. These results indicated that AlcA is one of essential components for the alcaligin siderophore biosynthesis. The mutant strains obtained in this study will be used in the further studies for the biochemical function of AlcA.

Effect of plasmid curing on the production of siderophore from glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W (글루탐산을 유일한 탄소 원과 질소 원으로 이용하는 Acinetobacter sp. B-W의 글루탐산으로부터의 시드로포어 생산에 미치는 플라스미드 제거 효과)

  • Kim, Kyoung-Ja;Lee, Jae-Rim;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.266-271
    • /
    • 2018
  • Effect of plasmid curing of Acinetobacter sp. B-W on the production of siderophore from glutamic acid as both carbon and nitrogen sole sources was investigated. Plasmid cured mutant of strain B-W lost the ability to produce siderophore from glutamic acid at $28^{\circ}C$. Transformant E. coli $DH5{\alpha}$ harboring 20 kb plasmid, that was isolated from wild type of strain B-W produced siderophore from glutamic acid as both carbon and nitrogen sole sources at $28^{\circ}C$, but, not at $36^{\circ}C$. Production of siderophore from glutamic acid by transformant E. coli $DH5{\alpha}$ was completely inhibited by $10{\mu}M\;FeCl_3$. In previous report, catechol nature of siderophore produced from glutamic acid by strain B-W was detected by Arnow test. The siderophore produced from glutamic acid by transformant E. coli $DH5{\alpha}$ was also catechol type. Rf value of siderophore produced from transformant E. coli $DH5{\alpha}$ grown in medium glutamic acid as both carbon and nitrogen sole sources at $28^{\circ}C$ was 0.32 in butanol-acetic acid-water (12:3:5) as developing solvent. Rf value of the siderophore was the same with that of wild type of strain B-W. Thus a single plasmid of 20 kb seemed to be involved in the production of siderophore from glutamic acid.

Production of Antifungal Materials by Bacillus sp. Which Inhibit Growth of Phytophthora infestans and Fusarium oxysporum (Phytophthora infestans와 Fusarium oxysporum의 생장을 저해하는 Bacillus 분리균주들의 항진균성 물질 생성능)

  • Lee, Kang-Hyeong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.258-263
    • /
    • 2008
  • Late blight, one of the most important disease in many agricultural crops, is caused by Phytophthora infestans. Fusarium wilt is a vascular disease of many plants caused by Fusarium oxysporum. Some bacteria isolated from rhizosphere were screened for their ability to inhibit the growth of F. oxysporum and P. infestans. Productions of siderophore, $\beta-1$,3-glucanase, hydrogen cyanide and chitinase by 4 isolated strains were examined. Among them, Bacillus sp. RFO41 most effectively inhibited the growth of F. oxysporum. The highest productions of siderophore and $\beta-l$,3-glucanase were shown in the culture of Bacillus sp. RFO41. Bacillus strain PS2 was most effective against P. infestans. PS2 showed the highest production of chitinase and hydrogen cyanide. A significant relationship was shown between the antagonistic effects of isolates against F. oxysporum and P. infestans and their production level of siderophore, $\beta-1$,3-glucanase, hydrogen cyanide, and chitinase.

Temperature dependent 2,3-dihydroxybenzoic acid production in Acinetobacter sp. B-W (Acinetobacter sp. B-W의 온도 의존적 2,3-dihydroxybenzoic acid 생산)

  • Kim, Kyoung-Ja;Lee, Jae-Hun;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • A soil microorganism producing iron chelator (siderophore) under low iron stress (up to $2{\mu}M$ of iron) was identified as Acinetobacter sp. B-W by 16S rDNA sequence analysis, biochemical-, physiological tests and morphological analysis using electron microscope. Catechol nature of siderophore was detected by Arnow test. Although optimal cell growth was identified at $36^{\circ}C$ in iron-limited media, significant quantities of siderophore were produced only at $28^{\circ}C$. Biosynthesis of siderophore was strongly inhibited by growth at $36^{\circ}C$. Production of siderophore was completely inhibited by $10{\mu}M\;FeCl_3$. Iron chelator produced from Acinetobacter sp. B-W was purified from supernatant using butanol extraction, Sephadex LH-20 column chromatography and HPLC. Purified sideropore was identified as 2,3-dihydroxybenzoic acid by HPLC, TLC and IR analysis.