Browse > Article

Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium.  

Woo, Sang-Min (Department of Applied Microbiology, Yeungnam University)
Woo, Jae-Uk (Department of Applied Microbiology, Yeungnam University)
Kim, Sang-Dal (Department of Applied Microbiology, Yeungnam University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.2, 2007 , pp. 128-134 More about this Journal
Abstract
Previously, we isolated plant growth promoting rhizobacterium (PGPR) Bacillus licheniformis K11 which could produce auxin, cellulase and siderophore. The siderophore of B. licheniformis K11 $(siderophore_{K11})$ was determined to be a catechol type siderophore which is produced generally by Bacillus spp. B. licheniformis K11 could produce the siderophore most highly after 96 h of incubation under nutrient broth at $20^{\circ}C$ with initial pH 9.0. For the production of the $siderophore_{K11}$, trehalose and $NH_4Cl$ were the best carbon and nitrogen sources in Davis minimal medium, respectively. The $siderophore_{K11}$ was Produced in M9 medium (pH 9.0) after 4 days at $20^{\circ}C$, and purified from culture broth of B. licheniformis K11 by using Amberlite XAD-2, Sephadex LH-20 column chromatography, and reversed-phase HPLC. The $siderophore_{K11}$ had the biocontrol activity against spore germination of P. capsici and F. oxysporum on potato dextrose agar (PDA). The results indicate that the $siderophore_{K11}$ is an antifungal mechanism of B. licheniformis K11 against phytopathogenic fungi.
Keywords
PGPR (plant growth promoting rhizobacterium); siderophore; catechol type; Bacillus licheniformis K11;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Bergeron, R. J. and J. S. McManis. 1991. Synthesis of catecholamide and hydroxamate siderophore. In CRC Hanbook of Microbial Iron Chelates, (ed) G. Winkelmann, CRC Press, Boca Raton, F1. pp. 271-307
2 Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-Producing biocontrol activity. Kor. J. Microbiol. Biotechnol. 34: 94-100   과학기술학회마을
3 Leoffler, W. J., S. M. Tschen, N. Vanittanakom, M. Kugler, E. Knorpp, T. F. Hsieh, and T. G. Wu. 1986. Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F29-3: a comparison with activaties of other Bacillus antibiotics. J. Phytopathol. 115: 204-213   DOI
4 Lim, H. S. and S. D. Kim 1995. The role and characterization og ${\beta}$-1,3-Glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri. J. Microbiol. 33: 295-304   과학기술학회마을
5 Takeuchi, S., K. Hirayama, K. Ueda, H. Sasaki, and H. Yonehara. 1958. Blasticidin S, a new antibiotic. J. Antibiot. 11: 1-5   PUBMED
6 Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-537
7 Scher, F. M. and R. Baker. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil. suppressiveness to Fusarium wilt pathogens. Phytopathol. 72: 1567-1573   DOI
8 Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006. Selection of the Auxin, Siderophore, and Cellulase-Producing PGPR, Bacillus licheniformis K11 and Its Plant Growth Promoting Mechanisms. J. Kor. Soc. Appl. Biol. Chem. 50: 23-28   과학기술학회마을
9 Kim. K. Y. and S. D. Kim. 1997. Biological control of Pyricularia aryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Kor. J. Appl. Microbiol. Biotechnol. 25: 396-402
10 Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant prowth-promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
11 Crosa, J. H. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53: 517-530   PUBMED
12 Yun, G. H., E. T. Lee, and S. D. Kim. 2001. Identification and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Kor. J. Appl. Microbial. Biotechnol. 29: 186-193   과학기술학회마을
13 Arima, K., H. Imanaka, M. Kousaka, A. Fukuta, and G. Tamura. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28: 575-576   DOI
14 Corbin, J. L. and W. A. Bulen. 1969. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N, 6-N-di-(2,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry. 8: 757-762   DOI   ScienceOn
15 Paulitz, T. C. and J. E. Loper. 1991. Lack of a role for fluorescent siderphore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathol. 81: 930-935   DOI
16 Lee, M. W. 1997. Root colonization by beneficial Pseudomonas spp. and bioassay of suppression of fusarium wilt of radish. The Kor. J. Mycol. 25: 10-19   과학기술학회마을
17 Lee, J. M., H. S. Lim, T. H. Chang, and S. D. Kim. 1999. Isolation of siderophore-producing Pseudomonas fluorescens GL7 and its biocontrol activity against root-rot disease. Kor. J. Appl. Microbiol. Biotechnol. 27: 427-432   과학기술학회마을
18 Neilands, J. B. 1984. Siderophores of bacteria and fungi. Microbiol. Sci. 1: 9-14   PUBMED
19 Lim, H. S. and S. D. Kim. 1997. Role of siderophore in biocontrol of Fusarium solani and enhanced growth response of Bean by Pseudomonas fluorescens GL20. J. Microbiol. Biotechnol. 7: 13-20
20 Glick, B. R., C. L. Patten, G Holguin, and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press. Canada
21 Csaky, T. 1948. In the estimation of bound hydroxylamine. Acta Chem. Scand. 2: 450-454   DOI
22 Katiyar, V. and G. Reeta. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
23 Hider, R. C. 1984. Siderophore mediated absorption of iron. Structure & Bonding. 58: 25-87   DOI
24 Ito, T. and J. B. Neilands. 1958. Products of 'low-iron fermentation' with Bacillus subtilis: isolation, characterization and synthesis of 2,3-dihydroxybenzoylglycine. J. Am. Chem. Soc. 80: 4645-4647   DOI
25 Lee, E. T. and S. D. Kim. 2000. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 28: 334-340   과학기술학회마을
26 Brian, P. W., J. M. Wright, J. Stubbs, and A. M. Way. 1951. Uptake of antibiotic metabolites of soil microorganisms by plant. Nature, 167: 347-349   DOI   ScienceOn
27 Lee S. Y., S. B. Lee, Y. K. Kim, and H. G. Kim. 2004. Effect of agrochemicals on mycelial growth and spore germination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew. Kor. J. Pesti. Sci. 8: 71-78
28 Gregory, K. F., O. N. Allen, A. J. Riker, and W. H. Peterson. 1952. Antibiotics as agents for the control of certain damping-off fungi, Am. J. Botany. 9: 405-415
29 Han, K. H., C. U. Lee, and S. D. Kim. 1999. Antagonistic role of chitinase and antibiotic produces by Promicromonospora sp. KH-28 toward F. oxysporum. Kor. J. Appl. Microbial. Biotechnol. 27: 349-353
30 Jung, H. K. and S. D. Kim. 2004. Selection and antaginistic mechanism of Pseudomonas fluorescens 4059 against phytophthora blight disease. Kor. J. Microbiol. Biotechnol. 32: 312-316
31 Payne, S. M. 1994. Detection, isolation, and characterization of siderophore. Methods enzymology. 235: 329-344   DOI