Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.7.1112

Studies of an alcA Gene Involved in Alcaligin Siderophore Biosynthesis in Bordetella bronchiseptica  

Hwang, Ho-Soon (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim, Young-Hee (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim, Sam-Woong (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Yu, Jong-Earn (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Yoo, Ah-Young (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Kang, Ho-Young (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Lee, Tae-Ho (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.16, no.7, 2006 , pp. 1112-1118 More about this Journal
Abstract
Bordetella bronchiseptica, the agent of swine atrophic rhinitis and kennel cough in dogs, is a mucosal pathogen and produces the hydroxamate type alcaligin siderophore under iron-limited conditions. Genes involved in alcaligin siderophore biosynthesis are contained in an alcABCDE operon. In order to provide direct evidence for the role of AlcA in alcaligin biosynthesis, we needed a B. bronchiseptica mutant carrying alcA gene deletion. A 0.6 kb alcA 5'-flanking and 0.7kb 3'-flanking DNA fragments were PCR amplified with the use of pCP1.11 as a template DNA. The 5'-and 3'-flanking DNA fragments were joined in a suicide plasmid, resulting in a recombinant suicide plasmid pDM1. After introduction of pDM1 into B. bronchiseptica by conjugation, the allelic exchange technique was performed and a B. bronchiseptica alcA deletion mutant, named B. bronchiseptica H1, was obtained. The mutant strain produced reduced amount of siderophore as expected. When a plasmid containing complete alcA gene was transformed back into the mutant, the complemented mutant recovered ability of siderophore production. These results indicated that AlcA is one of essential components for the alcaligin siderophore biosynthesis. The mutant strains obtained in this study will be used in the further studies for the biochemical function of AlcA.
Keywords
Bordetella bronchiseptica; alcaligin; siderphoe; alcA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Neilands, J. B., and K. Nakamura. 1991. Detection, determination, isolation, characterization and regulation of microbial iron chelates, D. 1-15. In G. Winkelmann(ed.), Handbook of microbial iron chelates. CRC Press, Boca Raton, Fla.
2 Nishio, T., and Y. Ishida. 1990. Production of dihydroxamate siderophore alcaligin by Alcaligines denitrificans subsp. xylosoxydans. Agric. Biol. Chem. 54, 1837-1839   DOI
3 Pradel, E., N. Guiso, and C. Locht. 1998. Identification of AlcR, an AraC-type regulator of alcaligin siderophore synthesis in Bordetella bronchiseptica and Bordetella pertussis. J. Bacteriol. 180, 871-880
4 Sambrook, J., E. F., Fritsch, and T. Maniatis. 1989. Molecular cloning : a lacoratory manual, Cold Spring Harbor laboratory, Cold Spring Harbor, N. Y.
5 Schmitt, M. P., and R. K. Holmes. 1991. Iron-dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect. Immun. 59, 1899-1904
6 Tsai, J., D. W. Dyer, and P. F. Sparling. 1988. Loss of transferrin receptor activity in Neisseria meningitidis correlates with inability to use transferrin as an iron source. Infect. Immun. 56, 3132-3138
7 Blanton, K. J., G. D. Biswas, J. Tsai, J. Adams, D. W. Dyer, S. M. Davis, G. G. Koch, P. K Sen, and P. F. Sparling. 1990. Genetic evidence that Neisseria ganarrhoeae produces specific receptors for transferrin and lactoferrin. J. Bacteriol. 172, 5225-5235   DOI
8 Brickman, T. J. and S. K. Armstrong. 1996. The ornithine decarboxylase gene ode is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alealigin. J. Bacteriol. 178, 54-60   DOI
9 Grant, C. C., and M. L. Vasil. 1986. Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa. J. Bacteriol. 168, 1112-1119   DOI
10 Calderwood, S. B., and J. J. Mekalanos. 1987. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169, 4759-4764   DOI
11 Kang, H. Y., and S. K. Armstrong. 1998. Transcriptional analysis of the Bordetella alcaligin siderophore biosynthesis operon. J. Bacteriol. 180, 855-861
12 Litwin, C. M., and S. B. Calderwood. 1993. Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6, 137-149   DOI
13 Lory, S. 1986. Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa. J. Bacterol. 168, 1451-1456   DOI
14 Mietzner, T. A., and S. A. Morse. 1994. The role of iron-binding proteins in the survival of pathogenic bacteria. Annu. Rev. Nutr. 14, 471-493   DOI   ScienceOn
15 Morton, D. J. and P. Williams. 1990. Siderophore-independent acquisition of transferrin-bound iron by Haemophilus influenzae type b. J. Gen. Microbiol. 136, 927-933   DOI   ScienceOn
16 Armstrong, S. K, and M. O. Clements. 1993. Isolation and characterization of Bordetella bronchiseptica mutants deficient in siderophore activity. J. Bacteriol. 175, 1144-1152   DOI
17 Kang, H. Y., T. J. Brickman, F. C. Beaumont, and S. K. Armstrong. 1996. Identification and characterization of iron-regulated Bordetella pertussis alealigin siderophore biosynthesis genes. J. Bacteriol. 178, 4877-4884   DOI