• Title/Summary/Keyword: side lobe rejection

Search Result 7, Processing Time 0.016 seconds

Design and Fabrication of Reflective Array Type Wideband SAW Dispersive Delay Line

  • Choi Jun-Ho;Yang Jong-Won;Nah Sun-Phil;Jang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.110-116
    • /
    • 2006
  • A reflective array type surface acoustic wave(SAW) dispersive delay line(DDL) with high time-bandwidth at the V/UHF-band is designed and fabricated for compressive receiver applications. This type of the SAW DDL has the properties of the relative bandwidth of 20 %, the time delay of 49.89 usec, the insertion loss of 38.5 dB and the side lobe rejection of 39 dB. In comparison with a commercial SAW DDL, the insertion loss, amplitude ripple and side lobe rejection are improved by $1.5dB{\pm}0.6dB$ and 4 dB respectively. Using the fabricated SAW DDL, the prototype of the compressive receiver is developed. It is composed of RF converter, fast tunable LO, chirp LO, A/D converter, signal processing unit and control unit. This prototype system shows a fine frequency resolution of below 30 kHz with high scan rate.

A Switched VCO-based CMOS UWB Transmitter for 3-5 GHz Radar and Communication Systems

  • Choi, Woon-Sung;Park, Myung-Chul;Oh, Hyuk-Jun;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.326-332
    • /
    • 2017
  • A switched VCO-based UWB transmitter for 3-5 GHz is implemented using $0.18{\mu}m$ CMOS technology. Using RF switch and timing control of DPGs, the uniform RF power and low power consumption are possible regardless of carrier frequency. And gate control of RF switch enables the undesired side lobe rejection sufficiently. The measured pulse width is tunable from 0.5 to 2 ns. The measured energy efficiency per pulse is 4.08% and the power consumption is 0.6 mW at 10 Mbps without the buffer amplifier.

Applications of a Chirping and Tapering Technique on Photonic Band-Gap(PBG) Structures for Bandwidth Improvement

  • Tong Ming-Sze;Kim Hyeong-Seok;Chang Tae-Gyu
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 2005
  • Microwave or optical photonic band-gap(PBG) structures are conventionally realized by cascading distributive elements in a periodic pattern. However, the frequency bandwidth obtained through such plainly periodic arrangement is typically narrow, corporate with a relatively high rejection side-lobe band. To alleviate such problems, a design involving a chirping and tapering technique is hence introduced and employed. The design has been applied in both a planar stratified dielectric medium as well as a strip-line transmission line structure, and results are validated when compared with the corresponding conventional PBG structure.

A study on the improvement of c-axis preferred orientation and electrical resistivity of ZnO thin films by two-step deposition method (2단계 증착 방법에 의한 ZnO 박막의 c-축 배향성 및 비저항 향상에 관한 연구)

  • Lee, Hye-Jung;Lee, Myung-Ho;Lee, Jin-Bock;Seo, Soo-Hyung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1340-1342
    • /
    • 2001
  • ZnO thin films are Prepared on Si(111) substrate by RF magnetron sputtering. Two-step deposition method is proposed to obtain ZnO thin films with high c-axis (002) TC value and electrical resistivity. This method consists of the following two-step deposition procedures: 1st-deposition for 10$\sim$30 min without oxygen at 100W and 2nd-deposition with oxygen added in the range of $O_2/(Ar+O_2)$ = 10 $\sim$ 50%. SAW filters with IDT/ZnO/Si(111) configuration are also fabricated. From the frequency response characteristics, the insertion loss and the side-lobe rejection are estimated.

  • PDF

Effects of Deposition Conditions on Properties of AIN Films and Characteristics of AIN-SAW Devices (다양한 증착변수에 따른 AIN 박막의 물성 및 SAW 소자의 특성 분석)

  • 정준필;이명호;이진복;박진석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.319-324
    • /
    • 2003
  • AIN thin films are deposited on Si (100) and $SiO_2$/Si substrates by using an RF magnetron sputtering method and by changing the conditions of deposition variables, such as RF power, $N_2$/Ar flow ratio, and substrate temperature ($T_sub$). For all the deposited AIN films, XRD Peak patterns are monitored to examine the effect of deposition condition on the crystal orientation. Highly (002)-oriented AIN films are obtained at following nominal deposition conditions; RF Power : 350W, $N_2$/Ar ratio = 10/20, T$_{sub}$ : $250^{\circ}C$, and working pressure = 5mTorr, respectively. AIN-based SAW devices are fabricated using a lift-off method by varying the thickness of AIN layer. Insertion losses and side-lobe rejection levels of fabricated SAW devices are extracted from their frequency response characteristics, which are also compared in terms of AIN thickness and substrate. Relationships between the film properties of AIN films and the frequency responses of SAW devices are discussed. It is concluded from the experimental results that the (002)-preferred orientation as well as the surface roughness of AIN film may play a crucial role of determining the device performances of AIN-SAW devices.s.

Effects of SiO$_2$ Buffer Layer on Properties of ZnO thin films and Characteristics of SAW Devices with a Multilayered Configuration of IDT/ZnO/SiO$_2$/Si (SiO$_2$ 완충층이 ZnO 박막의 물성 및 IDT/ZnO/SiO$_2$/Si 다층막 구조 표면탄성파 소자의 특성에 미치는 영향)

  • Lee, Jin-Bok;Lee, Myeong-Ho;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.417-422
    • /
    • 2002
  • ZnO thin films were deposited on various substrates, such as Si-(111), SiO$_2$(5000 $\AA$ by thermal CVD)/Si-(100), and SiO$_2$(2000 $\AA$ by RF sputtering)/Si-(100). The (002)-orientation, surface morphology and roughness, and electrical resistivity of deposited films were measured and compared in terms of substrate. Surface acoustic wave(SAW) filters with a multilayered configuration of IDT/ZnO/SiO$_2$/Si were also fabricated and the IDT was obtained using a lift-off method. From the frequency-response characteristics of fabricated devices, the insertion loss and side-lobe rejection were estimated. The experimental results showed that the (002)-oriented growth nature of ZnO films, which played a crucial role of determining the characteristic of SAW device, was strong1y dependent upon the SiO$_2$buffer.

A C-Band CMOS Bi-Directional T/R Chipset for Phased Array Antenna (위상 배열 안테나를 위한 C-대역 CMOS 양방향 T/R 칩셋)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.571-575
    • /
    • 2017
  • This paper presents a C-band bi-directional T/R chipset in $0.13{\mu}m$ TSMC CMOS technology for phased array antenna. The T/R chipset, which is a key component of phased array antenna, consists of a 6 bit phase shifter, a 6 bit step attenuator, and three bi-directional gain amplifiers. The phase shifter is controlled up to $354^{\circ}$ with $5.625^{\circ}$ phase step for precise beam steering. The step attenuator is also controlled up to 31.5 dB with 0.5 dB attenuation step for the side lobe level rejection. The LDO(Low Drop Output) regulator for stable 1.2 V DC power and the SPI(Serial Peripheral Interface) for digital control are integrated in the chipset. The chip size is $2.5{\times}1.5mm^2$ including pads.