• Title/Summary/Keyword: shooting methods

Search Result 109, Processing Time 0.024 seconds

The Image Contents Production Techniques Using Drone (드론을 이용한 영상콘텐츠 제작기법)

  • Park, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.491-498
    • /
    • 2018
  • As unmanned aerial vehicle(UVA), drone means a flying object that could aviate the route entered by a program in advance or remotely-controlled when a pilot is not on board. Drone that has been initially developed for the military purpose is currently used for diverse areas such as agricultural industry, leisure activity, logistics service, and life-saving area. Out of these areas, the shooting drone equipped with a camera is actively used for diverse image contents production areas including film and broadcasting area. This paper examines the characteristics of drone for the purpose of shooting, and also handles the shooting techniques using drone. Especially, this study aims to suggest and discuss the methods to shoot diverse camera working used by the existing image shooting with the use of drone after examining the operation of shooting drone used for the image contents production area.

Capturing Distance Parameters Using a Laser Sensor in a Stereoscopic 3D Camera Rig System

  • Chung, Wan-Young;Ilham, Julian;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2013
  • Camera rigs for shooting 3D video are classified as manual, motorized, or fully automatic. Even in an automatic camera rig, the process of Stereoscopic 3D (S3D) video capture is very complex and time-consuming. One of the key time-consuming operations is capturing the distance parameters, which are near distance, far distance, and convergence distance. Traditionally these distances are measured by tape measure or triangular indirect measurement methods. These two methods consume a long time for every scene in shot. In our study, a compact laser distance sensing system with long range distance sensitivity is developed. The system is small enough to be installed on top of a camera and the measuring accuracy is within 2% even at a range of 50 m. The shooting time of an automatic camera rig equipped with the laser distance sensing system can be reduced significantly to less than a minute.

Distribution of Heavy Metal Content in Plants and Soil from a Korean Shooting Site

  • Baek, Kyung-Hwa;Kim, Hyun-Hee;Park, Jin-Sung;Bae, Bumhan;Chang, Yoon-Young;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.231-237
    • /
    • 2004
  • In this research we determined the levels of heavy metals in soil and metal-accumulating plants from a D military shooting site in the Kyungkido district of Korea. The data obtained may be useful in the development of methods for the efficient phytoremediation of contaminated soil. The total Cd, Cu, Pb, and Zn concentrations in the soil were found to be 1.67-5.04 mg/kg, 52.51-106.26 mg/kg, 37.24-90.32mg/kg, and 111.45-188.19mg/kg, respectively. These results show that the soil is contaminated with Cd and Cu, and this contamination is particularly severe in the case of Cd because of its high bioavailability (25-57% of the total metal in the soil is exchangeable). The high concentrations of heavy metals in the shoots of Persicaria thunbergii and Artemisia princeps var. orientalis indicate that these plants (all perennial herbs) accumulate heavy metal efficiently. Further, these plants were found to contain more Cd in its shoots (>60% of the total metal found in the plant) than any other plant; these results indicate that these native species are particularly suited to use in Cd phytoextraction.

Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.256-265
    • /
    • 2023
  • Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total error was smaller, with a faster convergence speed.

Research on Numerical Calculation of Normal Modes in Nonlinear Vibrating Systems (비선형 진동계 정규모드의 수치적 계산 연구)

  • Lee, Kyoung-Hyun;Han, Hyung-Suk;Park, Sungho;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.795-805
    • /
    • 2016
  • Nonlinear normal modes(NNMs) is a branch of periodic solution of nonlinear dynamic systems. Determination of stable periodic solution is very important in many engineering applications since the stable periodic solution can be an attractor of such nonlinear systems. Periodic solutions of nonlinear system are usually calculated by perturbation methods and numerical methods. In this study, numerical method is used in order to calculate the NNMs. Iteration of the solution is presented by multiple shooting method and continuation of solution is presented by pseudo-arclength continuation method. The stability of the NNMs is analyzed using Floquet multipliers, and bifurcation points are calculated using indirect method. Proposed analyses are applied to two nonlinear numerical models. In the first numerical model nonlinear spring-mass system is analyzed. In the second numerical model Jeffcott rotor system which has unstable equilibria is analyzed. Numerical simulation results show that the multiple shooting method can be applied to self excited system as well as the typical nonlinear system with stable equilibria.

A reinforcement learning-based method for the cooperative control of mobile robots (강화 학습에 의한 소형 자율 이동 로봇의 협동 알고리즘 구현)

  • 김재희;조재승;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.648-651
    • /
    • 1997
  • This paper proposes methods for the cooperative control of multiple mobile robots and constructs a robotic soccer system in which the cooperation will be implemented as a pass play of two robots. To play a soccer game, elementary actions such as shooting and moving have been designed, and Q-learning, which is one of the popular methods for reinforcement learning, is used to determine what actions to take. Through simulation, learning is successful in case of deliberate initial arrangements of ball and robots, thereby cooperative work can be accomplished.

  • PDF

A study on effect of heat transfer of condensation including noncondensable gas over a flat plate (불응축가스가 평판위 응축열전달에 미치는 영향에 관한 연구)

  • 양대일;정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • In present paper, mass transfer over a flat plate with film condensation including noncondesable gas is analyzed with the help of similarity methods. Couette flow was assumed in liquid film and boundary-layer approximation was used in the ambient flow. Governing equations were transformed into the ordinary differential equtions by the similarity methods. Runge-Kutta and shooting method were used in order to fine the effect of mass transfer on the velocity and concentrations at the liquid-vapor interface.

  • PDF

The Historical Transition of Handheld Camera (핸드헬드 카메라의 변화에 관한 소고)

  • Chin, Vitnam
    • Trans-
    • /
    • v.6
    • /
    • pp.79-95
    • /
    • 2019
  • The advent of the handheld camera has dramatically transformed film production and consumption in countless ways. French director and theorist, Alexandre Astruc focuses on the development of 16mm camera and foretell film will be used as a tool to realize the personal vision of the author like other art. As proof of his claim French New Wave and Cinéma vérité create the film with handheld camera on the real location to capture new reality. Their films are distinguished itself from other films made by conventional Hollywood studios. Similarly, John Cassavetes in the United States began to focus on the handheld camera. Since then the handheld camera has become one of the popular shooting methods. Especially, handheld camera are noted for their agile movement and mobility as a way to capture various realities. However, with the advances in technology, lighter cameras and higher resolution have changed in different ways. The technology is neutral, one shooting method does not serve for one philosophy or ism. At one time, handheld shooting is now used as not only a means to capture the real world but also a tool to mimic a realistic feeling.

  • PDF

Finding Optimal Controls for Helicopter Maneuvers Using the Direct Multiple-Shooting Method

  • Kim, Min-Jae;Hong, Ji-Seung;Kim, Chang-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • The purpose of this paper deals with direct multiple-shooting method (DMS) to resolve helicopter maneuver problems of helicopters. The maneuver problem is transformed into nonlinear problems and solved DMS technique. The DMS method is easy in handling constraints and it has large convergence radius compared to other strategies. When parameterized with piecewise constant controls, the problems become most effectively tractable because the search direction is easily estimated by solving the structured Karush-Kuhn-Tucker (KKT) system. However, generally the computation of function, gradients and Hessian matrices has considerably time-consuming for complex system such as helicopter. This study focused on the approximation of the KKT system using the matrix exponential and its integrals. The propose method is validated by solving optimal control problems for the linear system where the KKT system is exactly expressed with the matrix exponential and its integrals. The trajectory tracking problem of various maneuvers like bob up, sidestep near hovering flight speed and hurdle hop, slalom, transient turn, acceleration and deceleration are analyzed to investigate the effects of algorithmic details. The results show the matrix exponential approach to compute gradients and the Hessian matrix is most efficient among the implemented methods when combined with the mixed time integration method for the system dynamics. The analyses with the proposed method show good convergence and capability of tracking the prescribed trajectory. Therefore, it can be used to solve critical areas of helicopter flight dynamic problems.

Using Omnidirectional Images for Semi-Automatically Generating IndoorGML Data

  • Claridades, Alexis Richard;Lee, Jiyeong;Blanco, Ariel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.319-333
    • /
    • 2018
  • As human beings spend more time indoors, and with the growing complexity of indoor spaces, more focus is given to indoor spatial applications and services. 3D topological networks are used for various spatial applications that involve navigation indoors such as emergency evacuation, indoor positioning, and visualization. Manually generating indoor network data is impractical and prone to errors, yet current methods in automation need expensive sensors or datasets that are difficult and expensive to obtain and process. In this research, a methodology for semi-automatically generating a 3D indoor topological model based on IndoorGML (Indoor Geographic Markup Language) is proposed. The concept of Shooting Point is defined to accommodate the usage of omnidirectional images in generating IndoorGML data. Omnidirectional images were captured at selected Shooting Points in the building using a fisheye camera lens and rotator and indoor spaces are then identified using image processing implemented in Python. Relative positions of spaces obtained from CAD (Computer-Assisted Drawing) were used to generate 3D node-relation graphs representing adjacency, connectivity, and accessibility in the study area. Subspacing is performed to more accurately depict large indoor spaces and actual pedestrian movement. Since the images provide very realistic visualization, the topological relationships were used to link them to produce an indoor virtual tour.