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Abstract 

The purpose of this paper deals with direct multiple-shooting method (DMS) to resolve helicopter 
maneuver problems of helicopters. The maneuver problem is transformed into nonlinear problems and 
solved DMS technique. The DMS method is easy in handling constraints and it has large convergence 
radius compared to other strategies. When parameterized with piecewise constant controls, the problems 
become most effectively tractable because the search direction is easily estimated by solving the 
structured Karush-Kuhn-Tucker (KKT) system. However, generally the computation of function, 
gradients and Hessian matrices has considerably time-consuming for complex system such as helicopter. 
This study focused on the approximation of the KKT system using the matrix exponential and its 
integrals. The propose method is validated by solving optimal control problems for the linear system 
where the KKT system is exactly expressed with the matrix exponential and its integrals. The 
trajectory tracking problem of various maneuvers like bob up, sidestep near hovering flight speed and 
hurdle hop, slalom, transient turn, acceleration and deceleration are analyzed to investigate the 
effects of algorithmic details. The results show the matrix exponential approach to compute gradients 
and the Hessian matrix is most efficient among the implemented methods when combined with the 
mixed time integration method for the system dynamics. The analyses with the proposed method 
show good convergence and capability of tracking the prescribed trajectory. Therefore, it can be used 
to solve critical areas of helicopter flight dynamic problems. 
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Introduction 

There exist various strategies1,2 for reaching 
numerical solutions to the nonlinear optimal control 
problem. The direct multiple-shooting (DMS) 
method is usually preferred for analyzing general 
nonlinear optimal control problems due to its 
convenience in handling system constraints and a 
large convergence radius compared to other methods. 
However, these advantages can be decreased in case 
the estimation of the related Karush-Kuhn-Tucker 
(KKT) system is not accurate enough to guarantee 
robust analyses. The errors in  estimating the KKT 
system are originated from time integration and finite 
difference method in the standard DMS method. 

Design of Direct Multiple-

Shooting Controller 

2.1 Formulation of nonlinear optimal 
control problems 

Nonlinear optimal control problems can be 

represented by the standard Bolza form3, 4.  

ò F+= f

f

t

tfftux
dtuxtxtuxJ

0

),())((),,(min
,,

f                (1) 

s.t.  

00 )(

],0[),),(),(()(

xtx
ttttutxftx f

=

Î=&
                         (2) 

0)),(( =ff ttxh                              (3) 
* Graduate Student 

** Professor 
E-mail : cjkim@konkuk.ac.kr  
Tel : +82-2-450-4094   Fax : +82-2-444-6670 



Finding Optimal Controls for Helicopter Maneuvers Using the Direct Multiple-Shooting Method             11 
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In the above equations 
fo ttux ,,,  represent 

states, controls, initial time and final time, 
respectively and F,f  denote final cost and const 

function. The system dynamics, initial condition, 
final condition, and system constraints are 
defined in Eq (2)-Eq(4). 

2.2 Direct Multiple Shooting Method 

The DMS method transforms the above 

equations into a solvable nonlinear programming 

problem in finite dimension using suitable state and 

control parameterization methods. The resulting 

nonlinear programming (NLP) problem can be 

effectively resolved using the SQP method. The 

control parameterization, with piecewise constant 

controls, formulates one of the most efficient DMS 

methods because the related QP solution benefits 

from the sparseness in the KKT system. In the 

interest of completeness, the major procedures of 

DMS methods are introduced, in which the 

mathematical notations are similar to those used in 

Ref. 7. In a case where controls are parameterized 

using piecewise constant inputs, the related NLP 

can be derived by applying the following steps:  

For the application of the DMS method, N-

shooting nodes and initial states at each shooting 

node are defined in Eq (5) and the control at each 

shooting-interval is assumed to be piecewise 

constant as defined in Eq (6). 
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By solving the initial value problems the states 
and cost function contribution over each 
shooting-interval can be written as 
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Where ),;( jjj qstX  defines the system 

states over the j-th shooting interval with initial 

state js and control input jq . Then the system 

dynamics are transformed into the equality 
constraints as shown in Eq (9) and the optimal 
control problem can be converted into a NLP 
problem as in Eq (10). 
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2.3 Sequential Quadratic Problem (SQP) 

The SQP framework is one of the most 
popular iterative method to solve the NLP 
problem. In this framework the cost function is 
approximated using the quadratic function and the 
constraints are linearly approximated. If we 
define ( )q

j
s
j pp ,  as iterative corrections in initial 

states 
js and controls jq over the j-th shooting 

interval, these correction can be obtained by 
solving the following QP sub-problem.  
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where J  is the quadratic approximation of 
local cost functions and 

jjjj EGDF ,,,  are 

Jacobean matrices for the constraint functions 
defined as following  
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2.4 Karush-Kuhn-Tucker (KKT)System 

The adjoined cost function can be defined 
using Lagrange multipliers (

jl  and
jm ) to derive 

the KKT-condition as follows: 
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The detailed derivation of the KKT-condition can 

be found in Ref. 7, and the related KKT system 

can be summarized as for j=2,…,N-1: 
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In  Eq.  (17),  on ly act ive inequal i ty 

constraints should be included with the positivity 
condition of 0³jm . Therefore, the resultant KKT 

system is written as a linear system with a 

banded structure. Ref. 7 introduces the Schur 

complement method and the reduced Hessian 

method as a means to obtain an efficient solution for 

the above KKT system. Since the local cost 

function and continuity conditions include time 

integration terms, the gradient vectors of those 

functions requires repeated time integrations of 

motion equations, which are generally the most 

time-consuming elements in the SQP-based 

DMS method for highly complex nonlinear 

systems.  

Dynamic Models and Numerical 

Method 

3.1 Rotorcraft Model 

This paper presents the usage of a rotor 
dynamic model, proposed by R. T. N. Chen20, 
where hub fixed flap states are used to derive the 
closed form expression for aerodynamic forces 
and moments based on quasi-linear aerodynamic 
theory. If the tip-path-plane dynamics are 
assumed to approximate first-harmonic 
components, then the higher-harmonic 
components can be removed in the rotor 
dynamics and aerodynamic forces and moments. 
In this study, the aerodynamic forces and 
moments, generated by rotors, are calculated 
using the main and tail rotor trim solution. This 
approach allows the use of relatively large time 
intervals for the time integration of the motion 
equations. However, any compromise in the 
model selection is still a huge drawback and 
high-fidelity models will become more 
acceptable with the advancement of the computer 
technology and with the improvements in the 
solution methodology. If high-fidelity models are 
required, the level 2 modeling formulated in Ref. 
18 can be applied. The resultant computational 
burden can then be estimated based on the 
results from Ref. 10. For LQR problems, a linear 
time-invariant model is derived using a finite 
difference formula around trim flight conditions. 

3.2 Numerical Methods for the SQP-based DMS 

Gradients and Hessian matrices related to 
the continuity condition and to cost function can 
be estimated by using the SDME25(State-
Dependent matrix Exponential) technique Where 
numerical estimation of these matrices is 
required, a central differencing method is used 
with the following formula23 for the cost function 
gradient vector: 
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Here, jy , je , and jyD  denote the jth design 

variable, a unit vector whose components are 
zero except j-th row equal to 1 and a small 
increment, respectively. The Hessian matrix can 
also be updated using the BFGS method. The 
BFGS method iteratively update the Hessian  
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matrix, H , for the following general NLP problem 
with the design variable x : 

0)(s.t.
)(min
=xh

xJ
                                     (19) 

The corresponding BFGS formula23 has the 

following expression at the kth iteration stage: 
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The BFGS method is the most popular 
technique for the iterative Hessian update in the 
SQP method because it is fast and widely 
applicable despite its simplicity.  

The line search procedure based on the 
Powell’s method24 is applied in this study, using 
the L1-penality function (or the L1-merit 

function) PP , which can be used to represent a 

system having equality constraints )(yhi , 
mi ,,1K=  and active inequality constraints 

mjyg j ,,1),( K= , as follows:  

åå
==

++=
l

j
jj

m

i
iiP xgxhxJxP

11
))(,0max()()(),,( tsts  (21) 

Penalty parameters are iteratively updated 

using initial guesses
)0()0()0()0( , jjii mtls == , where 

)0(
il and 

)0(
jm are Lagrange multipliers 

corresponding to the first SQP iteration. These 

parameters are recursively updated using 

Lagrange multipliers )(k
il and max

)( ,,2,1, kkk
j L=m , 

for the kth SQP iteration as follows. 
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Next, the one-dimensional line search and 
the update of design variables are performed 
using the following formulae: 

kk
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One-dimensional optimization, shown in Eq. 
(23), is performed using the following steps of 
the Powell’s algorithm: 

[step 1] set )0(
ka :=1 with kx :=current states and 

controls and kd : search direction. 

[step 2] check the Wolf condition for each 
iteration index j, with initial setting  j:=0 
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If true, then set )(
1

j
kkkk dxx a+=+  

and go to 

[step 3] 
Otherwise, set )()1( j

k
j

k aka a=+

 
and return to 

the beginning of [step 2] 
(In this paper we use 7.0=ak  for a linear 

system, 5.0=ak for a nonlinear system) 

 [step 4] terminate the one-dimensional search 
with the step length of 

k
j

k d)(a . 

The above steps generally work well in the 
DMS method with a linear system but sometimes 
the initial step size can becomes too large to 
reach a converged solution when applied to a 
DMS with nonlinear dynamics. In this case, the 
initial step size is limited in order to guarantee 
numerical convergence by using this formula: 

)/,0.1min( 111
)0(

--= kkk dxka , and 8.01 =k       (27) 

In some cases, the step size controlled by 

step 2 and by above equation can be too small to 

continue efficient SQP iteration. In this paper two 

different strategies are used to cope with such 

cases. If the condition 121 -- £D kk xx k  with 

111 --- =D kkk dx a  is satisfied for a given 

constant 2.01 =k , an the initial step size is 

increased by using )1,2min( 1
)0(

-= kk aa , in order to 

speed up subsequent iterations of the line search. 
Also, where minaa £k for an allowed minimum 

value of mina , the line search routine is completed 

and the next SQP iteration begins. In this paper, 
the parameter mina is specified as 3

min 100.1 -´=a . 
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There exist various other strategies to improve 
the numerical efficiency of the one-dimensional 
search, such as higher-order correction methods 
to prevent the Maratos effect, the watchdog 
technique to cope with the cycling effect, etc. 
However, the appropriate selection from such 
methods depends on the problem at hand and, in 
most cases, is heuristically determined resulting 
in increased computational burden. For this 
reason, the convergence characteristics of the 
one-dimensional search algorithm in question 
were investigated during the code development 
stage. 

Applications 

4.1 Maneuver Trajectory 

The numerical methods outlined in the 
previous sections are applied to an optimal 
control formulation for slalom maneuver of the 
BO-105 helicopter and the modeling details are 
covered in Ref. 8. The maneuver trajectory for 
this study is prescribed using trigonometric 
functions, as in Ref. 21 and 22. A trajectory can 
be expressed as the sum of states at maneuver 
entry and its variation during the maneuver.  

)()()( txtxtx entry D+=                                (28) 
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The lateral-position change during a 
slalom maneuver is initially described with the 
following formula: 
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Where 10)/()( ££--= tttttt entryfinishentry  

The times entryt  and finisht  designate maneuver 

entry and finish times, respectively, and max)( xD  is 

the maximum amplitude of the Y-position, which  
determines the maneuver aggressiveness for a 
given duration. Since a vehicle’s maneuver is 
carried out in three-dimensional space, its 
trajectory must be defined in all three axes. The 
maneuver accuracy in other axes is commonly 
specified in terms of bounded deviations from 
stabilized trim reference parameters such as 
flight speed, altitude, sideslip, heading, and 
positions, etc. These trajectory deviations are 
considered when we define a cost function for  

optimal control problems. The following form of 
the quadratic cost function with no terminal cost 
is implemented in this study14: 
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Where  

     Rx       : reduced rigid body states 

targetx   : target states 

 

[ ]

),,,,

,,,,,,,(

),,,(
,,,,,,,,,,,)(

110

HyNxE

qpwvuC

T
NER

qqqqq
qqqqqqqdiagQ

rrrrdiagR
hyxqpwvutx

TRSC

yq

fy

dddd

yqfy

&

&

=

=
=

 

For simplicity of analysis, no system constraints 
are imposed. The target states )(txtarget

 are set to 

be the trim states trimRx )( , except in cases where 

they require a description of their time variation 
for a specific maneuver.  

The control weighting matrix R  and the 
semi-positive definite weighting matrix Q  are 
selected with those diagonal components as: 

  100) 5, 0, ,50,1.00.1, ,2,2.00.4, ,1,1,1(
)50,50,50,50(

diagQ
diagR

=
=

    (32) 

The initial conditions for the state variables 
are specified by the results of the trim analysis 
because the maneuver considered for this study 
is initiated from a steady trim condition. Terminal 
conditions are defined in terms of the target 
states at the end of a maneuver: 
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4.2 Rotorcraft Trajectory Tracking Problem 

The SDME technique25 was applied to the 
slalom maneuver problems of the Bo-105 
helicopter, where the slalom trajectory was 
defined by maneuver parameters of 0.5)( max =Dy m, 

0.1=entryt seconds, and 0.9=finisht  seconds. In this 

setup, the slalom maneuver begins in a steady 

level flight at a forward speed of 60 knots. The 

optimal control problem was formulated with 

0.00 =t and 0.10=ft  seconds.  The 4-stage 

Runge-Kutta time integrator was used for the 

forward simulations. If not otherwise specified, 

500 shooting nodes for linear systems and 800 

shooting nodes for nonlinear systems were  
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evenly distributed over ]10,0[Ît  and the time 

interval between two adjacent shooting nodes 

was divided into 32 integration stages. In case of 

the LQR problem, KKT system matrices 

corresponding to the cost function and continuity 

conditions could be expressed exactly, with the 

SDME under the DMS framework.  

For the comparative study among the time 

integration method and the way of building the 

KKT system, the following classifications are 

defined for (a) HE: Function value of equality 

constraint function, (b) GHE: Gradient of equality 

constraint function, and (c) GOB: Gradient of the 

objective function. 

(1) Full Time Integration method  
- All of HE, GHE, and GOB are computed 

using time integration and finite difference 
formula 

(2) Only GOB Time Integration 
- HE and GHE are computed using SDME 
- GOB is computed using time integration and 

finite difference formula 

(3) Only GOB Matrix exponential  
- GOB is computed using SDME 
- HE and GHE are computed using time 

integration and finite difference formula 

(4) Only HE Matrix exponential  
- HE is computed using SDME 
- GHE and GOB are computed using time 

integration and finite difference formula 

(5) Only HE Time Integration 
- GHE and GOB are computed using SDME 
- HE is computed using time integration and 

finite difference formula 

Fig. 1 shows the computed slalom 
trajectory with different methods of building the 
KKT system. Fig. 2 ~ Fig. 6 present the 
variations of control inputs and state variables. 
Regardless of methods, the present DMS 
methods track well the prescribed trajectory. 
However, the details in controls and state 
variables show the scattering depending on the 
method used. Fig. 7 ~ Fig. 10 show the 
comparison of convergence history. All methods 
presents nearly the same convergence character. 
About 25 iterations are enough to get the fully 
converged solution. Fig. 11 shows the 
comparison in computing time. The SDME method 
shows the most efficient computation and the 
results using Runge-Kutta time integration with 
different numbers of internal stages shows the 
time integration for system dynamics consumes 
most of required computing time.  
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Fig. 1. The lateral position variation during 

slalom maneuver  
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(a) collective pitch variation 
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(b) longitudinal cyclic pitch variation 
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(c) lateral cyclic variation 
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(d) tail rotor collective pitch variation 

 

Fig. 2. Computed controls for slalom maneuver 
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Fig. 3. velocity variation during slalom maneuver 
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Fig. 4. pitch rate and pitch attitude variation  
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Fig. 5. roll rate and bank angle variation  
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Fig. 6. yaw rate and heading angle variation 
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Fig. 7. The error convergence of state variable 
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Fig. 8. correction in control input with SQP iteration 
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Fig. 9. correction in cost function with SQP iteration 
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Fig. 10. correction in constraints with SQP iteration 
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Fig. 11. comparison of relative computation 

time between matrix exponential and 

mixed time integration. 

Conclusion 

Applications of the SDME technique to linear 
quadratic regulator problems showed that the 
matrix exponential approach yields better numerical 
efficiency with the direct multiple-shooting method 
than the conventional estimations of the KKT 
system matrices. More importantly, this approach 
simultaneously calculates system states at the end 
of each shooting node as well as gradients and 
Hessian matrices for the cost function and 
continuity constraints. Here, repeated computations 
for the state-dependent factorization and integrals 
weighted by matrix exponential are the major 
contributors to long computing times for nonlinear 
optimal control analyses. 

Here, repeated computations for the state-
dependent However, the related computational 
burden is generally much less than that 
associated with the finite difference methods to 
estimate gradients of the cost function and 
continuity constraints. The proposed method 
calculates the converged solutions for the 
nonlinear trajectory tracking problem, even 
though the solutions using conventional 
approaches are mostly divergent. In addition, the 
state-dependent matrix exponential approach 
can be used to integrate nonlinear motion 
equations. The update frequency of state-
dependent coefficient matrices had a minor effect 
on the accuracy of trajectory tracking over the 
present time horizon. Therefore, the compared 
results could be utilized to design an efficient 
MPC framework using the present method. 
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