• Title/Summary/Keyword: shock formation

Search Result 177, Processing Time 0.033 seconds

Shock-wave Synthesis of Titanium Diboride in Copper Matrix and Compaction of $TiB_2$-Cu Nanocomposites

  • Lomovsky, O.I.;Mali, V.I.;Dudina, D.V.;Korchagin, M.A.;Kwon, D.H.;Kim, J.S.;Kwon, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1084-1085
    • /
    • 2006
  • We studied formation of nanostructured $TiB_2$-Cu composites under shock wave conditions. We investigated the influence of preliminary mechanical activation (MA) of Ti-B-Cu powder mixtures on the peculiarities of the reaction between Ti and B under shock wave. In the MA-ed mixture the reaction proceeded completely while in the non-activated mixture the reagents remained along with the product . titanium diboride. The size of titanium diboride particles in the central part of the compact was 100-300 nm.

  • PDF

ACCELERATION OF COSMIC RAYS AT LARGE SCALE COSMIC SHOCKS IN THE UNIVERSE

  • KANG HYESUNG;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.4
    • /
    • pp.159-174
    • /
    • 2002
  • Cosmological hydrodynamic simulations of large scale structure in the universe have shown that accretion shocks and merger shocks form due to flow motions associated with the gravitational collapse of nonlinear structures. Estimated speed and curvature radius of these shocks could be as large as a few 1000 km/s and several Mpc, respectively. According to the diffusive shock acceleration theory, populations of cosmic-ray particles can be injected and accelerated to very high energy by astrophysical shocks in tenuous plasmas. In order to explore the cosmic ray acceleration at the cosmic shocks, we have performed nonlinear numerical simulations of cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. We adopted the Bohm diffusion model for CRs, based on the hypothesis that strong Alfven waves are self-generated by streaming CRs. The shock formation simulation includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. For merger shocks with small Mach numbers, however, the energy transfer to CRs is only about $10-20\%$ with an associated CR particle fraction of $10^{-3}$. Nonlinear feedback due to the CR pressure is insignificant in the latter shocks. Although detailed results depend on models for the particle diffusion and injection, these calculations show that cosmic shocks in large scale structure could provide acceleration sites of extragalactic cosmic rays of the highest energy.

Identification of Genes Encoding Heat Shock Protein 40 Family and the Functional Characterization of Two Hsp40s, MHF16 and MHF21, in Magnaporthe oryzae

  • Yi, Mi-Hwa;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.131-142
    • /
    • 2008
  • Magnaporthe oryzae, the causal agent of the rice blast disease, poses a worldwide threat to stable rice production. The large-scale functional characterization of genes controlling the pathogenicity of M. oryzae is currently under way, but little is known about heat shock protein 40 (Hsp40) function in the rice blast fungus or any other filamentous plant pathogen. We identified 25 genes encoding putative Hsp40s in the genome of M. oryzae using a bioinformatic approach, which we designated M. oryzae heat shock protein forty (MHF 1-25). To elucidate the roles of these genes, we characterized the functions of MHF16 and MHF21, which encode type ill and type n Hsp40 proteins, respectively. MHF16 and MHF21 expression was not significantly induced by heat shock, but it was down-regulated by cold shock. Knockout mutants of these genes $({\Delta}$mhf16 and ${\Delta}$mhf21) were viable, but conidiation was severely reduced. Moreover, sectoring was observed in the ${\Delta}mhf16$ mutant when it was grown on oatmeal agar medium. Conidial germination, appressorium formation, and pathogenicity in rice were not significantly affected in the mutants. The defects in conidiation and colony morphology were fully complemented by reintroduction of wild type MHF16 and MHF21 alleles, respectively. These data indicate that MHF16 and MHF21 play important roles in conidiation in the rice blast fungus.

Thermal Shock Cycles Optimization of Sn-3.0 Ag-0.5 Cu/OSP Solder Joint with Bonding Strength Variation for Electronic Components (Sn-3.0 Ag-0.5 Cu/OSP 무연솔더 접합계면의 접합강도 변화에 따른 전자부품 열충격 싸이클 최적화)

  • Hong, Won-Sik;Kim, Whee-Sung;Song, Byeong-Suk;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.152-159
    • /
    • 2007
  • When the electronics are tested with thermal shock for Pb-free solder joint reliability, there are temperature conditions with use environment but number of cycles for test don't clearly exist. To obtain the long term reliability data, electronic companies have spent the cost and times. Therefore this studies show the test method and number of thermal shock cycles for evaluating the solder joint reliability of electronic components and also research bonding strength variation with formation and growth of intermetallic compounds (IMC). SMD (surface mount device) 3216 chip resistor and 44 pin QFP (quad flat package) was utilized for experiments and each components were soldered with Sn-40Pb and Sn-3.0 Ag-0.5 Cu solder on the FR-4 PCB(printed circuit board) using by reflow soldering process. To reliability evaluation, thermal shock test was conducted between $-40^{\circ}C\;and\;+125^{\circ}C$ for 2,000 cycles, 10 minute dwell time, respectively. Also we analyzed the IMCs of solder joint using by SEM and EDX. To compare with bonding strength, resistor and QFP were tested shear strength and $45^{\circ}$ lead pull strength, respectively. From these results, optimized number of cycles was proposed with variation of bonding strength under thermal shock.

Thw Characteristic of Supersonic Flow with Condensation along a Wavy Wall of Small Amplitute in Channel (미소진폭 파형벽을 가진 유로내에서 凝縮을 수반하는 超音速 유동의 特性 - 수치해석 결과)

  • 김병지;권순범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1990-1997
    • /
    • 1992
  • The characteristic of supersonic flow with condensation along a wavy wall of small amplitude in channel is investigated through the direct marching method of characteristics. The very complex problem that may appear where the overlapping of the same family characteristics occurs, can be satisfactorily solved by means of the modified method suggested by Zucrow. In the present study for the case of supersonic moist air flow, the dependency of location of formation and reflection of oblique shock wave generated by the wavy wall, and the distributions of flow properties, on the relative humidity and temperature at the entrance of wavy wall is clarified by plots of streamline, ios-Mach umber and ios-flow properties. Also, it is confirmed that the wavy wall plays an important key role in the formation of oblique shock wave, and that the effect of condensation on the flow field appears apparently.

Embryological Studies on Somitogenesis of Early Chick Embryos by heat shock and treatments of ${\alpha}$-amanitin and cycloheximide (열충격 및 ${\alpha}$-amanitin과 cycloheximide의 처리를 통한 초기 계배의 체절 형성 기작에 대한 발생학적 연구)

  • Choe, Rim-Soon;Park, Yong-Bin;Kim, Ok-Yong
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 1991
  • In order to investigate the factors of the control mechanism of somitogenesis, early chick embryos (H-H stage $8{\sim}13$) were treated with heat shock, ${\alpha}$-amanitin and cycloheximide and morphological changes of somite were examined by light microscopy, transmission and scanning electron microscopy. In normal chick embryo, somites were formed from the somitomere which preexisted in segmental plate. Somites were wrapped with extracellular collagen fibrils and connected with neural tube, notochord and ectoderm. And then, somites were differentiated to sclerotome, dermatome and myotome by the interaction of nervous tissue. Abnormal somites were observed after formation of six or seven so mites in heat shock treated group. Amounts of collagen fibrils were obviously decreased in this group. In cycloheximide treated group, most so mites were smaller and neural tube formation was incomplete. Chromatins were condenced and formed several heterochromatins in the nucleus of somite cells. Lipid like cytoplasmic dense mass and lipid droplets were also observed. Segmentation of somites seemed to be normal progress in ${\alpha}$-amanitin treated group. Center of somite, however, hollowed in longitudinal sectioned samples. These results suggested that so mites were already existed in the segmental plate as the form of somitomere. Segmented somites were contacted with neural tube or notochord and the somites were tightly connected with each other by the extracellular collagen fibrils which were secreted from neuroepithelium and somite cells. Somites are thought to differentiate into sclerotome, dermatome and myotome by these interactions.

  • PDF

Martian Bow Shock and Magnetic Pile-Up Barrier Formation Due to the Exosphere Ion Mass-Loading

  • Kim, Eo-Jin;Sohn, Jong-Dae;Yi, Yu;Ogino, Tatsuki;Lee, Joo-Hee;Park, Jae-Woo;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • Bow shock, formed by the interaction between the solar wind and a planet, is generated in different patterns depending on the conditions of the planet. In the case of the earth, its own strong magnetic field plays a critical role in determining the position of the bow shock. However, in the case of Mars of which has very a small intrinsic magnetic field, the bow shock is formed by the direct interaction between the solar wind and the Martian ionosphere. It is known that the position of the Martian bow shock is affected by the mass loading-effect by which the supersonic solar wind velocity becomes subsonic as the heavy ions originating from the planet are loaded on the solar wind. We simulated the Martian magnetosphere depending on the changes of the density and velocity of the solar wind by using the three-dimensional magnetohydrodynamic model built by modifying the comet code that includes the mass loading effect. The Martian exosphere model of was employed as the Martian atmosphere model, and only the photoionization by the solar radiation was considered in the ionization process of the neutral atmosphere. In the simulation result under the normal solar wind conditions, the Martian bow shock position in the subsolar point direction was consistent with the result of the previous studies. The three-dimensional simulation results produced by varying the solar wind density and velocity were all included in the range of the Martian bow shock position observed by Mariner 4, Mars 2, 3, 5, and Phobos 2. Additionally, the simulation result also showed that the change of the solar wind density had a greater effect on the Martian bow shock position than the change of the solar wind velocity. Our result may be useful in analyzing the future observation data by Martian probes.

Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact (초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향)

  • Kim, Ji-Won;Baek, Min-Seok;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.

An Isothermal Mganetohydrodynamic Code and Its Application to the Parker Instability

  • KIM JONGSOO;RYU DONGSU;JONES T. W.;HONG S. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.281-283
    • /
    • 2001
  • As a companion to an adiabatic version developed by Ryu and his coworkers, we have built an isothermal magnetohydrodynamic code for astrophysical flows. It is suited for the dynamical simulations of flows where cooling timescale is much shorter than dynamical timescale, as well as for turbulence and dynamo simulations in which detailed energetics are unimportant. Since a simple isothermal equation of state substitutes the energy conservation equation, the numerical schemes for isothermal flows are simpler (no contact discontinuity) than those for adiabatic flows and the resulting code is faster. Tests for shock tubes and Alfven wave decay have shown that our isothermal code has not only a good shock capturing ability, but also numerical dissipation smaller than its adiabatic analogue. As a real astrophysical application of the code, we have simulated the nonlinear three-dimensional evolution of the Parker instability. A factor of two enhancement in vertical column density has been achieved at most, and the main structures formed are sheet-like and aligned with the mean field direction. We conclude that the Parker instability alone is not a viable formation mechanism of the giant molecular clouds.

  • PDF

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF