Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.5.364

Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact  

Kim, Ji-Won (School of Advanced Materials Engineering, Andong National University)
Baek, Min-Seok (School of Advanced Materials Engineering, Andong National University)
Park, Hee-Sub (ILJIN Diamond Co.)
Cho, Jin-Hyeon (ILJIN Diamond Co.)
Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
Publication Information
Journal of Powder Materials / v.23, no.5, 2016 , pp. 364-371 More about this Journal
Abstract
This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.
Keywords
Polycrystalline diamond compact; High pressure high temperature sintering; Thermal shock property; Diamond particle size;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. D. Stromberg and D. R. Stephens: Am. Ceram. Soc. Bull., 49 (1990) 1030.
2 H. Katman and W. F. Libby: Science, 172 (1971) 1132.   DOI
3 J. Hu, Y. K. Chou, R. G. Thompson, J. Burgess and S. Street: Surt. Coat. Technol., 202 (2007) 1113.   DOI
4 F. Bellin, A. Dourfaye, W. King and M. Thigpen: World Oil, 231 (2010) 41.
5 D. Belnap and A. Griffo: Dia. Rel. Mater., 13 (2004) 1914.   DOI
6 D. E. Scott: Ind. Diamond Rev., 1 (2006) 48.
7 D. Miess and G. Rai: Mater. Sci. Eng. A, 209 (1996) 270.   DOI
8 D. Jianxin, Z. Hui, W. Ze. and L. Aihua: Int. J. Refract. Met. Hard Mater., 29 (2011) 631.   DOI
9 M. V. Sneddon and D. R. Hall: J. Petrol. Technol., 40 (1988) 1593.   DOI
10 J. W. Kim, H. S. Park, J. H. Cho and K. A. Lee: J. Korean Powder Metall. Inst., 22 (2015) 1.   DOI
11 J. W. Kim, M. S. Baek, H. S. Park J. H. Cho, B. G. Park and K. A. Lee: to be submitted.
12 C. J. Kerr: J. Pet. Technol., 40 (1988) 327.   DOI
13 R. L. Mehan and L. E. Hibbs: J. Mater. Sci., 24 (1989) 942.   DOI
14 D. A. Glowka: Sandia National Laboratories (Master thesis).
15 X. Q. You, T. Z. Si, N. Liu, P. P. Ren, Y. D. Xu and J. P. Feng: Ceram. Inter., 31 (2005) 33.   DOI
16 D. Che, P. Han, P. Guo and K. Ehmann: J. Manuf. Sci. Eng., 134 (2012) 1.
17 S. N. Basu and V. K. Sarin: Mater. Sci. Eng. A, 209 (1996) 206.   DOI
18 J. X. Deng, Y. S. Li and W. L Song: Wear, 265 (2008) 1776.   DOI
19 C. A. Ribeiro, W. R. de Souza, M. S. Crespi, J. A. Gomes Neto and F. L. Fertonani a: J. Therm. Anal. Cal., 90 (2007) 801.   DOI