DOI QR코드

DOI QR Code

ACCELERATION OF COSMIC RAYS AT LARGE SCALE COSMIC SHOCKS IN THE UNIVERSE

  • KANG HYESUNG (Department of Earth Sciences, Pusan National University) ;
  • JONES T. W. (Department of Astronomy, University of Minnesota)
  • Published : 2002.12.01

Abstract

Cosmological hydrodynamic simulations of large scale structure in the universe have shown that accretion shocks and merger shocks form due to flow motions associated with the gravitational collapse of nonlinear structures. Estimated speed and curvature radius of these shocks could be as large as a few 1000 km/s and several Mpc, respectively. According to the diffusive shock acceleration theory, populations of cosmic-ray particles can be injected and accelerated to very high energy by astrophysical shocks in tenuous plasmas. In order to explore the cosmic ray acceleration at the cosmic shocks, we have performed nonlinear numerical simulations of cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. We adopted the Bohm diffusion model for CRs, based on the hypothesis that strong Alfven waves are self-generated by streaming CRs. The shock formation simulation includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. For merger shocks with small Mach numbers, however, the energy transfer to CRs is only about $10-20\%$ with an associated CR particle fraction of $10^{-3}$. Nonlinear feedback due to the CR pressure is insignificant in the latter shocks. Although detailed results depend on models for the particle diffusion and injection, these calculations show that cosmic shocks in large scale structure could provide acceleration sites of extragalactic cosmic rays of the highest energy.

Keywords

References

  1. A&Ap v.111 The structure of cosmic ray shocks Axford, W. I.;Leer, E.;McKenzie, J. F.
  2. ApJ v.476 Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with ULYSSES Observations Baring, M. G.;Ogilvie, K. W.;Ellison, D. C.;Forsyth, R. https://doi.org/10.1086/303645
  3. MNRAS v.182 The acceleratin of cosmic rays in shock fronts. Ⅰ Bell, A.R. https://doi.org/10.1093/mnras/182.2.147
  4. Nuclear Physic B. v.39 Efficiency of CR acceleration in supernova remnants Berezhko, E.;Ksenofontov, L.;Yelshin, V.
  5. ApJ v.487 Clusters of Galaxies as Storage Room for Cosmic Rays Berezinsky, V. S.;Blasi, P.;Ptuskin, V. S. https://doi.org/10.1086/304622
  6. SIAM J. Numer. Anal. v.35 Adaptive Mesh Refinement using Wave-Propagation Algorithms for Hyperbolic Systems Berger, J. S.;LeVeque, R. J. https://doi.org/10.1137/S0036142997315974
  7. Phys. Rept. v.154 Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin Blandford, R. D.;Eichler, D. https://doi.org/10.1016/0370-1573(87)90134-7
  8. Annual Rev. Astron. Astrophys. v.40 Cluster magnetic fields Carilli, C. L.;Taylor, G. B. https://doi.org/10.1146/annurev.astro.40.060401.093852
  9. ApJ v.547 A New Radio-X-Ray Probe of Galaxy Cluster Magnetic Fields Clark, T.E.;Kronberg, P.P.;B$\"{o}$ringer, H. https://doi.org/10.1086/318896
  10. Rept. Prog. Phys. v.46 An Introduction to the Theory of Shock Acceleration of Energetic Particles in Tenuous Plasmas Drury, L. O'C. https://doi.org/10.1088/0034-4885/46/8/002
  11. ApJ v.352 Particle injection and acceleration at earth's bow shock - Com - parison of upstream and downstream events Ellison, D. C.;M$\"{o}$bius, E.;Paschmann, G. https://doi.org/10.1086/168544
  12. A&Ap v.344 Nonthermal origin of the EUV and HEX excess emission of the Coma cluster - the nature of the energetic electrons Ensslin, T. A.;Lieu, R.;Biermann, P. L.
  13. A&A v.320 The magnetic field in the Coma cluster Feretti, L.;Dallacasa, D.;Giovannini, G.;Tagliani A.
  14. ApJ v.513 Hard X-Ray Radiation in the Coma Cluster Spectrum Fusco-Femiano, R.;Dal Fiume, D.;Feretti, L.;Giovannini, G.;Grandi, P.;Matt, G.;Molendi, S.;Santangelo, A. https://doi.org/10.1086/311902
  15. ApJ v.534 Hard X-Ray Emission from the Galaxy Cluster A225 Fusco-Femiano, R.;Dal Fiume, D.;De Grandi, S.;Feretti, L.;Giovannini, G.;Grandi, P.;Malizia, A.;Matt, G.;Molendi, S. https://doi.org/10.1086/312639
  16. A&Ap v.364 Time dependent cosmic-ray shock acceleration with self-consistent injection Gieseler U.D.J.;Jones T.W.;Kang H.
  17. New Astronomy v.4 Radio halo and relic candidates from the NRAO VLA Sky Survey Giovannini, G.;Tordi, M.;Feretti, L. https://doi.org/10.1016/S1384-1076(99)00018-4
  18. ApJ v.363 Time-dependent evolution of cosmic-ray-mediated shocks in the two-fluid model Jones, T. W.;Kang, H. https://doi.org/10.1086/169361
  19. MNRAS v.249 Numerical studies of diffusive particle acceleration in supernova remnants Kang, H.;Jones, T. W.
  20. ApJ v.428 Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation Kang, H.;Cen, R.;Ostriker, J. P.;Ryu D. https://doi.org/10.1086/174213
  21. ApJ v.447 Diffusive shock Acceleration Simulations: Comparison with Particle Methods and Bow Shock Measurements Kang H.;Jones T.W. https://doi.org/10.1086/175932
  22. ApJ v.456 Contributions to the Cosmic Ray Flux above the Ankle: Clusters of Galaxies Kang, H.;Ryu, D.;Jones, T. W. https://doi.org/10.1086/176666
  23. MNRAS v.286 Contributions to the Cosmic Ray Flux above the Ankle: Clusters of Galaxies Kang, H.;Rachen, J.;Biermann, P. L. https://doi.org/10.1093/mnras/286.2.257
  24. ApJ v.550 Time Evolution of Cosmic-Ray Modified Plane Shocks Kang, H.;Jones, T. W.;LeVeque, R. J.;Shyue, K. M. https://doi.org/10.1086/319804
  25. ApJ v.579 Numerical Studies of Costmic-Ray Injection and Acceleration Kang, H.;Jones, T. W.;Gieseler, U.D.J
  26. ApJ v.355 Detection of excess rotation measure due to intracluster magnetic fields in clusters of galaxies Kim, K.-T.;Kronberg, P. P.;Tribble, P. C. https://doi.org/10.1086/168737
  27. Rep. Prog. Phys. v.325 Kronberg, P. P.
  28. ApJ v.480 The Protogalactic Origin for Cosmic Magnetic Fields Kulsrud, R. M.;Cen, R.;Ostriker, J. P.;Ryu, D. https://doi.org/10.1086/303987
  29. SIAM J. Scien. Comput. v.16 One-dimensional front-tracking based on high resolution wave propagation methods LeVeque, R. J.;Shyue, K. M. https://doi.org/10.1137/0916023
  30. ApJ v.510 Nonthermal Origin of the EUV and Soft X-Rays from the Coma Cluster: Cosmic Rays in Equipartition with the Thermal Medium Lieu, R.;Ip, W.-H.;Axford, W. I.;Bonamente, M. https://doi.org/10.1086/311790
  31. Nature v.405 Cosmic .-ray background from structure formation in the intergalactic medium Loeb, A;Waxmann, E. https://doi.org/10.1038/35012018
  32. MNRAS v.314 Non-linear amplification of a magnetic field driven by cosmic ray streaming Lucek, S.G.;Bell, A.R. https://doi.org/10.1046/j.1365-8711.2000.03363.x
  33. Phys. Rev. E v.58 Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation Malkov, M.A. https://doi.org/10.1103/PhysRevE.58.4911
  34. Adv. Space Res. v.21 Diffusive ion acceleration at shocks: the problem of injection Malkov, M.A.;V$\"{o}$lk H.J. https://doi.org/10.1016/S0273-1177(97)00961-7
  35. Rep. Progr. Phys. v.64 Nonlinear theory of diffusive acceleration of particles by shock waves Malkov M.A.;Drury, L.O'C. https://doi.org/10.1088/0034-4885/64/4/201
  36. astro-ph/0203014 Inter-galactic Shock Acceleration and the Cosmic Gamma-ray Background Miniati, F. https://doi.org/10.1046/j.1365-8711.2002.05903.x
  37. ApJ v.542 Properties of Cosmic Shock Waves in Large-Scale Structure Formation Miniati, F.;Ryu, D.;Kang, H.;Jones, T. W.;Cen, R.;Ostriker, J. https://doi.org/10.1086/317027
  38. ApJ v.559 cosmic-Ray Protons Accelerated at Cosmological Shocks and Their Impact on Groups and Clusters of Galaxies Miniati, F.;Ryu, D.;Kang, H.;Jones, T.W. https://doi.org/10.1086/322375
  39. ApJ v.562 Cosmic-Ray Electrons in Groups and Clusters of Galaxies: Primary and Secondary Populations from a Numerical Cosmological Simulation Miniati, F.;Jones, T. W.;Kang, H.;Ryu, D. https://doi.org/10.1086/323434
  40. ApJ v.454 The Origin of Cosmic Rays above 10 18.5 eV Norman C. A.;Melrose D. B.;Achterberg A. https://doi.org/10.1086/176465
  41. J. Geophys. Res. v.93 Theory and simulation of collisionless parallel shocks Quest. K.B. https://doi.org/10.1029/JA093iA09p09649
  42. A&AP v.335 Cosmic magnetic fields in large scale filaments and sheets Ryu, D.;Kang, H.;Biermann, P. L.
  43. ApJ v.520 The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission Sarazin, C. L. https://doi.org/10.1086/307501
  44. ApJ v.494 Extreme-Ultraviolet Emission from Clusters of Galaxies: Inverse Compton Radiation from & Relic Population of Cosmic Ray Electrons? Sarazin, C. L.;Lieu, R. https://doi.org/10.1086/311196
  45. astro-ph/0207411 A statistical detection of gamma-ray emission from galaxy clusters: implications for the gamma-ray background and structure formation Scharf, C. A.;Mukherjee, R. https://doi.org/10.1086/343035
  46. MNRAS v.172 cosmic ray streaming. Ⅰ - Effect of Alfv$\'{e}$n waves on particles Skilling, J. https://doi.org/10.1093/mnras/172.3.557
  47. AJ v.107 Searching for cluster magnetic fields in the cooling flows of 0745-191, A2029, and A4059 Taylor, G. B.;Barton, E. J.;Ge, J. P. https://doi.org/10.1086/117006

Cited by

  1. Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays vol.395, pp.3, 2009, https://doi.org/10.1111/j.1365-2966.2009.14691.x
  2. Modelling injection and feedback of cosmic rays in grid-based cosmological simulations: effects on cluster outskirts vol.421, pp.4, 2012, https://doi.org/10.1111/j.1365-2966.2012.20562.x
  3. Clusters of galaxies vol.184, pp.4, 2014, https://doi.org/10.3367/UFNr.0184.201404a.0339
  4. Cosmological Cosmic Rays and the Observed6Li Plateau in Metal‐poor Halo Stars vol.627, pp.2, 2005, https://doi.org/10.1086/430401
  5. Clusters of galaxies vol.57, pp.4, 2014, https://doi.org/10.3367/UFNe.0184.201404a.0339
  6. Magnetic field evolution in giant radio relics using the example of CIZA J2242.8+5301 vol.462, pp.2, 2016, https://doi.org/10.1093/mnras/stw1792
  7. Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks vol.620, pp.1, 2005, https://doi.org/10.1086/426855
  8. Interactions of UHE cosmic ray nuclei with radiation during acceleration: consequences for the spectrum and composition vol.502, pp.3, 2009, https://doi.org/10.1051/0004-6361/200911839
  9. ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS vol.36, pp.1, 2003, https://doi.org/10.5303/JKAS.2003.36.1.001
  10. Spectral and polarization study of the double relics in Abell 3376 using the Giant Metrewave Radio Telescope and the Very Large Array vol.426, pp.2, 2012, https://doi.org/10.1111/j.1365-2966.2012.21519.x
  11. Cosmological Shock Waves and Their Role in the Large‐Scale Structure of the Universe vol.593, pp.2, 2003, https://doi.org/10.1086/376723
  12. COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS vol.36, pp.3, 2003, https://doi.org/10.5303/JKAS.2003.36.3.111
  13. A comparison of cosmological codes: properties of thermal gas and shock waves in large-scale structures vol.418, pp.2, 2011, https://doi.org/10.1111/j.1365-2966.2011.19546.x