Browse > Article
http://dx.doi.org/10.5423/PPJ.2008.24.2.131

Identification of Genes Encoding Heat Shock Protein 40 Family and the Functional Characterization of Two Hsp40s, MHF16 and MHF21, in Magnaporthe oryzae  

Yi, Mi-Hwa (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Agricultural Biomaterials, Seoul National University)
Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Agricultural Biomaterials, Seoul National University)
Publication Information
The Plant Pathology Journal / v.24, no.2, 2008 , pp. 131-142 More about this Journal
Abstract
Magnaporthe oryzae, the causal agent of the rice blast disease, poses a worldwide threat to stable rice production. The large-scale functional characterization of genes controlling the pathogenicity of M. oryzae is currently under way, but little is known about heat shock protein 40 (Hsp40) function in the rice blast fungus or any other filamentous plant pathogen. We identified 25 genes encoding putative Hsp40s in the genome of M. oryzae using a bioinformatic approach, which we designated M. oryzae heat shock protein forty (MHF 1-25). To elucidate the roles of these genes, we characterized the functions of MHF16 and MHF21, which encode type ill and type n Hsp40 proteins, respectively. MHF16 and MHF21 expression was not significantly induced by heat shock, but it was down-regulated by cold shock. Knockout mutants of these genes $({\Delta}$mhf16 and ${\Delta}$mhf21) were viable, but conidiation was severely reduced. Moreover, sectoring was observed in the ${\Delta}mhf16$ mutant when it was grown on oatmeal agar medium. Conidial germination, appressorium formation, and pathogenicity in rice were not significantly affected in the mutants. The defects in conidiation and colony morphology were fully complemented by reintroduction of wild type MHF16 and MHF21 alleles, respectively. These data indicate that MHF16 and MHF21 play important roles in conidiation in the rice blast fungus.
Keywords
conidiation; heat shock protein 40; MHF; sectoring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Zhong, T. and Arndt, K. T. 1993. The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73:1175-1186.   DOI   ScienceOn
2 Park, J., Park, B., Jung, K., Jang, S., Yu, K., Choi, J., Kong, S., Kim, S., Kim, H., Kim, J. F., Blair, J. E., Lee, K., Kang, S. and Lee, Y. H. 2008. CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res. 36:D562-571.   DOI   ScienceOn
3 Westermann, B. and Neupert, W. 1997. Mdj2p, a novel DnaJ homolog in the mitochondrial inner membrane of the yeast. J. Mol. Biol. 272:477-483.   DOI   ScienceOn
4 Yu, J., Hu, S., Wang, J., Wong, G. K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Li, J., Liu, Z., Qi, Q., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Zhao, W., Li, P., Chen, W., Zhang, Y., Hu, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Tao, M., Zhu, L., Yuan, L. and Yang, H. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79-92.   DOI   ScienceOn
5 Talbot, N. J., Ebbole, D. J. and Hamer, J. E. 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575-1590.   DOI   ScienceOn
6 Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.   DOI   ScienceOn
7 Valent, B. 1990. Rice blast as a model system for plant pathology. Phytopathology 80:33-36.   DOI
8 Walsh, P., Bursac, D., Law, Y. C., Cyr, D. and Lithgow, T. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5:567-571.   DOI   ScienceOn
9 Rowley, N., Prip-Buus, C., Westermann, B., Brown, C., Schwarz, E., Barrell, B. and Neupert, W. 1994. Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77:249-259.   DOI   ScienceOn
10 Sambrook, J. and Russell, D. W. 2001. Molecular Cloning: a laboratory manual. 3rd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
11 Werner-Washburne, M., Becker, J., Kosic-Smithers, J. and Craig, E. A. 1989. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J. Bacteriol. 171:2680-2688.   DOI
12 Wright, C. M., Fewell, S. W., Sullivan, M. L., Pipas, J. M., Watkins, S. C. and Brodsky, J. L. 2007. The Hsp40 molecular chaperone Ydj1p, along with the protein kinase C pathway, affects cell-wall integrity in the yeast Saccharomyces cerevisiae. Genetics 175:1649-1664.   DOI   ScienceOn
13 Meacham, G. C., Browne, B. L., Zhang, W., Kellermayer, R., Bedwell, D. M. and Cyr, D. M. 1999. Mutations in the yeast Hsp40 chaperone protein Ydj1 cause defects in Axl1 biogenesis and pro-a-factor processing. J. Biol. Chem. 274:34396-34402.   DOI
14 Mulder, N. J., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., Bradley, P., Bork, P., Bucher, P., Cerutti, L., Copley, R., Courcelle, E., Das, U., Durbin, R., Fleischmann, W., Gough, J., Haft, D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McDowall, J., Mitchell, A., Nikolskaya, A. N., Orchard, S., Pagni, M., Ponting, C. P., Quevillon, E., Selengut, J., Sigrist, C. J., Silventoinen, V., Studholme, D. J., Vaughan, R. and Wu, C. H. 2005. InterPro, progress and status in 2005. Nucleic Acids Res. 33:D201-205.   DOI   ScienceOn
15 Nishikawa, S. and Endo, T. 1997. The yeast JEM1p is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. J. Biol. Chem. 272:12889-12892.   DOI
16 Martineau, C. N., Beckerich, J. M. and Kabani, M. 2007. Flo11pindependent control of "mat" formation by hsp70 molecular chaperones and nucleotide exchange factors in yeast. Genetics 177:1679-1689.   DOI   ScienceOn
17 Ou, S. H. 1985. Rice Diseases. Kew, England: Commonwealth Mycological Institute.
18 Rensing, L., Monnerjahn, C. and Meyer, U. 1998. Differential stress gene expression during the development of Neurospora crassa and other fungi. FEMS Microbiol. Lett. 168:159-166.   DOI   ScienceOn
19 Rho, H. S., Kang, S. and Lee, Y. H. 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells 12:407-411.
20 Heikkila, J. J. 1993. Heat shock gene expression and development. I. An overview of fungal, plant, and poikilothermic animal developmental systems. Dev. Genet. 14:1-5.   DOI   ScienceOn
21 Kelly, William L. 1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23:222-227.   DOI   ScienceOn
22 Khang, C. H., Park, S. Y., Lee, Y. H. and Kang, S. 2005. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet. Biol. 42:483-492.   DOI   ScienceOn
23 Kim, J. E., Kim, J. C., Jin, J., Yun, S. H. and Lee, Y. W. 2008. Functional characterization of genes located at the aurofusarin biosynthesis gene cluster in Gibberella zeae. Plant Pathol. J. 24:8-16.   과학기술학회마을   DOI   ScienceOn
24 Kim, S., Ahn, I. P., Rho, H. S. and Lee, Y. H. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 57:1224-1237.   DOI   ScienceOn
25 Luke, M. M., Sutton, A. and Arndt, K. T. 1991. Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaJ proteins. J. Cell Biol. 114:623-638.   DOI   ScienceOn
26 Burnie, J. P., Carter, T. L., Hodgetts, S. J. and Matthews, R. C. 2006. Fungal heat-shock proteins in human disease. FEMS Microbiol. Rev. 30:53-88.   DOI   ScienceOn
27 Caplan, A. J. and Douglas, M. G. 1991. Characterization of YDJ1: a yeast homologue of the bacterial dnaJ protein. J. Cell Biol. 114:609-621.   DOI   ScienceOn
28 Cheetham, M. E. and Caplan, A. J. 1998. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28-36.   DOI   ScienceOn
29 Bonato, M. C., Silva, A. M., Gomes, S. L., Maia, J. C. and Juliani, M. H. 1987. Differential expression of heat-shock proteins and spontaneous synthesis of HSP70 during the life cycle of Blastocladiella emersonii. Eur. J. Biochem. 163:211-220.   DOI   ScienceOn
30 Ahn, N., Kim, S., Choi, W., Im, K. H. and Lee, Y. H. 2004. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Mol. Cells 17:166-173.
31 Jeon, J., Park, S. Y., Chi, M. H., Choi, J., Park, J., Rho, H. S., Kim, S., Goh, J., Yoo, S., Park, J. Y., Yi, M., Yang, S., Kwon, M. J., Han, S. S., Kim, B. R., Khang, C. H., Park, B., Lim, S. E., Jung, K., Kong, S., Karunakaran, M., Oh, H. S., Kim, H., Kang, S., Choi, W. B. and Lee, Y. H. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39:561-565.   DOI   ScienceOn
32 Kaufmann, S. H. 1990. Heat shock proteins and the immune response. Immunol. Today 11:129-136.   DOI   ScienceOn
33 Gething, M. J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355:33-45.   DOI   ScienceOn
34 Greene, M. K., Maskos, K. and Landry, S. J. 1998. Role of the Jdomain in the cooperation of Hsp40 with Hsp70. Proc. Natl. Acad. Sci. USA 95:6108-6113.   DOI
35 Gething, M. J. 1997. Protein folding. The difference with prokaryotes. Nature 388:329-331.   DOI   ScienceOn
36 Chumley, F.G. and Valent, B. 1990. Genetic analysis of melanindeficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe. Interact. 3:135-143.   DOI
37 Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H., Read, N. D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986.   DOI   ScienceOn
38 Ebbole, D. J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu. Rev. Phytopathol. 45:437-456.   DOI   ScienceOn
39 Fan, C. Y., Lee, S., Ren, H. Y. and Cyr, D. M. 2004. Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol. Biol. Cell. 15:761-773.   DOI   ScienceOn
40 Craig, E. A. 1985. The heat shock response. CRC Crit. Rev. Biochem. 18:239-280.   DOI