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ABSTRACT

As a companion to an adiabatic version developed by Ryu and his coworkers, we have built an isothermal
magnetohydrodynamic code for astrophysical flows. It is suited for the dynamical simulations of flows where
cooling timescale is much shorter than dynamical timescale, as well as for turbulence and dynamo simulations
in which detailed energetics are unimportant. Since a simple isothermal equation of state substitutes the energy
conservation equation, the numerical schemes for isothermal flows are simpler (no contact discontinuity) than those
for adiabatic flows and the resulting code is faster. Tests for shock tubes and Alfvén wave decay have shown
that our isothermal code has not only a good shock capturing ability, but also numerical dissipation smaller than
its adiabatic analogue. As a real astrophysical application of the code, we have simulated the nonlinear three-
dimensional evolution of the Parker instability. A factor of two enhancement in vertical column density has been
achieved at most, and the main structures formed are sheet-like and aligned with the mean field direction. We

conclude that the Parker instability alone is not a viable formation mechanism of the giant molecular clouds.
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I. INTRODUCTION

The dynamics of astrophysical flows in general de-
pends on detailed cooling and heating processes. Good
numerical models should take into account of the en-
ergetics of the processes in the flows. There are, how-
ever, two extreme cases for which the energetics can
be simplified. One case is for the so-called “adiabatic
flows” where the energy in the system is not exchanged
with outside. Such adiabatic approximation is good
for flows, in which cooling time is far longer than dy-
namical time. The other case is for the “isothermal
flows” where the temperature is kept constant, tem-
porally and spatially. The isothermal approximation
describes the energetics of flows, in which cooling time
1s far shorter than dynamical time. An example of such
case is the flows in molecular clouds. The isothermal-
ity can also be applied, if the detailed energy budget is
not an important issue such as in turbulence or dynamo
simulations. '

Usually, numerical simulations of isothermal flows
are made with adiabatic codes by setting the adiabatic
index, -, close to unity. Yet, it is desirable to build
codes specifically for isothermal flows, since those codes
are simpler and faster than adiabatic ones. That is be-
cause the energy conservation equation need not to be
solved in isothermal codes. As the result, the entropy
mode, which carries the contact discontinuity, need not
to be considered.

Motivated by the above astrophysical and numeri-
cal reasons, we have built an isothermal magnetohy-
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drodynamic (MHD) code based on the total variation
diminishing (TVD) scheme (Harten 1983). In this pro-
ceeding, we briefly describe the building procedures of
the code, and show two performance tests devised to
measure the shock capturing ability and numerical dis-
sipation of the code. For complete descriptions, refer
Ryu & Jones (1995) and Ryu, Jones, & Frank (1995)
for the adiabatic version, and Kim et al. (1999) for the
isothermal version.

As an application for an inherently important astro-

physical problem, we have simulated the three-dimensional

nonlinear evolution of the Parker instability. Based
on the simulation results, we address the question on
whether the Parker instability forms giant molecular
clouds (GMCs). Unabridged descriptions on this issue
were published in Kim et al (1998) and Kim, Ryu, &
Jones (2001).

II. ISOTHERMAL MHD CODE

The isothermal MHD equations are composed of a
set of conservation equations for mass, momentum, and
magnetic flux. In addition, the isothermal equation of
state (p = pa?, where a is an isothermal sound speed) is
applied, which makes the set of equations closed. Here,
we mention briefly the building procedures of the code
devised to solve the isothermal MHD equations. First,
a one-dimensional TVD code is constructed, based on a
second-order extension of the Roe-type upwind scheme
(Roe 1981; Harten 1983). The left and right eigen-
vectors of a Jacobian matrix of the isothermal MHD
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Fig. 1.— A snapshot at ¢t = 0.2 from one-dimensional isothermal magnetohydrodynamic shock tube test. The ini-

tial condition is (p,vs,vy,v., By, B.) = (1.08,1.2,0.01,0.5,3.6/v4m,2/V4w) in the left region, (p,vs,vy,v:, By, B:) =
(1,0,0,0,4/v/4m,2/+/4n) in the right region, B, = 2/v4r and a = 1 for the whole computational interval. Open cir-
cles represent the numerical solution, while lines represent the analytic solution obtained from an exact nonlinear Riemann

solver. The calculation has been done with 512 cells.

equations, which are the essential ingredients of the
Roe-type scheme, were presented explicitly in Kim et
al. (1999). Then, the one-dimensional code is extended
to a multi-dimensional code through a Strang-type di-
mensional splitting. In the multi-dimensional code, an
explicit cleaning step is included to eliminate non-zero
V - B at every time step.

In order to test the shock capturing ability, we have
- simulated a battery of isothermal MHD shock tube
problems, which encompass all the structures formed
by the three MHD wave families. Fig. 1 shows one
example of them. After setting up the left half of
the computational domain {0,1] with, (p = 1.08,v, =
1.2,v, = 0.01,v, = 0.5, B, = 3.6/V4r, B, = 2/V4n),
the right half with (p = 1,v, = 0,vy = 0,v; = 0, B, =
4/\/4x,B, = 2/v/4r), and B, = 2/v/4~w in the whole
- domain, we have followed the evolution up to ¢t = 0.2.
~ Other numerical parameters are Courant number 0.8,
a = 1, and the number of cells 512. Two fast shocks
propagate outermost and two slow shocks interior to
those. Two rotational @Qontinu@s lie between the
fast and slow shocks-irr the right panel of Fig. 1. With-
out any stiffener, strong shocks are resolved within 3
or 4 cells and other discontinuities spread a bit wider.

Another important aspect of a code is its numerical
dissipation. In isothermal MHD codes, the dissipation
comes only from numerical viscosity and resistivity (no
thermal conduction). A simple way to quantify the
dissipation is to follow up a standing Alfvén wave nu-
merically, measure the decay rate of peak amplitudes,
and finally estimate a Reynolds number. For this pur-
pose, we have set up an initial condition that pg = 1,
§v; = vampsin(k,z + kyy), B = 1. &, and all other
. quantities are equal to zero. The calculations have been

done in a square periodic box with size L = 1 using cells
from 8 x 8 to 128 x 128. k,; = ky = 27/L has been set.
In Fig. 2 the resulting normalized decay rates as well
as Reynolds numbers (see Ryu et al. 1995 for the defi-
nitions of the decay rate and the Reynolds number) are
shown. Qur numerical Reynolds numbers scale almost
as R o« nZ,, indicating the code has a second-order
accuracy. Compared to the adiabatic MHD code, the
isothermal MHD code has smaller (up to 50%) numeri-
cal dissipation. This is mostly because it does not have
the entropy mode.

II1. PARKER INSTABILITY

The fact that a vertically stratified interstellar mag-
netized gas under a uniform gravity is unstable was
proved by Parker (1966) through a linear stability anal-
ysis. Numerical simulation of the Parker instability is
an interesting problem in both numerical and astro-
physical points of view. Numerically, the Parker insta-
bility might be one of good astrophysical application
problems for isothermal MHD codes. In the typical
environment of our Galactic disk, where the instability
takes place, the turbulent speed of gas is far larger than
its thermal speed and is almost constant. So by regard-
ing the turbulent speed as the isothermal speed, the
energetics of the gas can be described by the isother-
mal equation of state. Astrophysically, it is an impor-
tant issue whether the Parker instability itself can form
the GMCs. In order to address this issue, we have car-
ried out three-dimensional numerical simulations of the
Parker instability with and without being included the
effects of the Galactic rotation.

The initial equilibrium system is composed of expo-
nentially stratified gas and field (along the azimuthal
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Fig. 2.— Normalized decay rate, I'aL/ca, and magnetic Reynolds number, R, as a function of the number of cells along
one direction of the computation domain. At a given resolution, the peak-to-peak decay rate of the root-mean-square of
z-velocity (left) and the corresponding Reynolds number (right) are plotted with filled circles, respectively. The calculations

have been done with 8 x 8, 16 x 16, 32 x 32, 64 x 64, and 128 x 128 cells. For comparison, dotted lines of (I"'aL/ca) ox n>

cell

and R « nZ,, are drawn.

direction) in a uniform gravity (along the downward
vertical direction). For the rotation model, the compu-
tational box is set to rotate around the Galactic center
with a constant angular speed. To initiate the instabil-
ity random velocity perturbations are added. Here, we
enumerate some of the important findings from the nu-
merical simulations. First, from resolution study, the
density structure seen in high-resolution simulations is
somewhat different from that in coarse-resolution ones.
This is due to the inherent property of the Parker in-
stability that the most unstable mode has an infinite
wavenumber along the radial direction. In numerical
experiments, the size of the smallest resolvable struc-
ture is limited by numerical resolution. Second, the
maximum enhancement factor of vertical column den-
sity is at most ~ 2, and sheet-like structures form along
the direction of the initial magnetic field. These results
enable us to conclude that the Parker instability alone
is not a viable formation mechanism of GMCs. Third,
in the rotation model, Coriolis force makes the field
lines in the valley regions helically-skewed. Hence, we
suggest that the Coriolis force plays an important role
in converting uniform field into random component.

IVv. CONCLUSION

We have built an isothermal MHD TVD code based
on the second order extension of the Roe-type upwind
scheme. The code has not only a good shock capturing
ability but also has low numerical dissipation. Through
nonlinear simulations of the Parker instability with the
code, we have demonstrated that the Parker instability

alone is not a viable mechanism for the formation of
the GMCs.
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