• Title/Summary/Keyword: shipbuilding design system

Search Result 223, Processing Time 0.029 seconds

Case Study on the Bogie Arrangement of the Load-out System for On-ground Shipbuilding (선박 육상건조를 위한 로드-아웃 시스템의 보기 배치 사례 연구)

  • Hwang, John-Kyu;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.153-160
    • /
    • 2022
  • This study presents the bogie arrangement of the load-out system for on-ground shipbuilding. The load-out system is one of the most important systems to perform the bogie arrangement of the on-ground shipbuilding technique without dry dock facilities, and this system is composed of four pieces of equipment: bogies, driving bogie with motors, trestles, and power packs. Also, the bogie arrangement analysis (BAA) is employed to simply calculate the reaction forces at the trestle for structural safety. In this context, the purpose of this study is to propose an optimal design method to perform the bogie arrangement satisfying structural safety requirements with minimal cost. It is expected that the proposed methodology will contribute to the effective practice as well as to the improvement of competitive capability for shipbuilding companies at the on-ground shipbuilding stage. Furthermore, we describe some problems and their solutions of the deformation that may occur in the bottom of the hull during the load-out process. As a result, it is shown that we applied it to the 114K crude oil tanker (Minimum bogie 54EA) and the 174K CBM LNG carrier (Minimum bogie 88EA), it can minimize the number of bogie and critical risks (Safety rate 1.61) during the load-out of on-ground shipbuilding. Through this study, the reader will be able to learn successful load-out operation and economic shipbuilding in the future.

Web based Collaborative Design System for Concurrent Ship Design (동시공학적 선박설계를 위한 웹 기반의 협업설계 시스템)

  • Lee, Kyung-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.10-16
    • /
    • 2003
  • Under the concept of global economy, the enterprises are assigning design and production environments around the world in different areas. In shipbuilding companies, a serious problem of information exchange emerges as companies use traditional hardware and very distinct softwares appropriate to their field of expertise. To overcome the decreased productivity due to the interruption of information, the concept of simultaneous engineering and concurrent design becomes very significant. In this article, the concept oj collaborative design based on internet environments is described. Especially, the core technologies to achieve collaborative design environments among shipbuilding companies, ship owners, ship classification societies, model basin, and consulting companies are adopted.

  • PDF

Analysis on Product Architecture and Organizational Capability of Shipbuilding Industry in South Korea and China (한·중 조선 산업의 제품 아키텍처와 조직역량에 관한 연구)

  • Baek, Seoin;Lee, Seongmin;Lee, Dukhee
    • Journal of Technology Innovation
    • /
    • v.26 no.2
    • /
    • pp.69-93
    • /
    • 2018
  • As companies seek lower cost and superior quality at the same time, which depend on improvement in product architecture, they need to critically consider product architecture as part of corporate strategy. This research investigated how product architecture and organizational capability affect innovative outcomes with using architecture framework. As a result, we were able to find out Korean shipbuilding company has put much effort on integral works such as development of FGSS(Fuel gas supply system), PRS(Partial Re-liquefaction System) and weight lightening for improving fuel efficiency. And this kind of integral ability was realized by organizational capability of Korean shipbuilding company based on interactive relationship with plant workers. In contrast, Chinese shipbuilding companies focused excessively on the standard design and the convenience of research and development made by central government, overlooking the need for fine-tuning. As a result, the fuel efficiency of Chinese LNG ships turned out to be 7-10% lower than those of South Korea with using the same modules and components.

Virtual Reality Content-Based Training for Spray Painting Tasks in the Shipbuilding Industry

  • Lee, Gun-A.;Yang, Ung-Yeon;Son, Wook-Ho;Kim, Yong-Wan;Jo, Dong-Sik;Kim, Ki-Hong;Choi, Jin-Sung
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.695-703
    • /
    • 2010
  • Training is one of the representative application fields of virtual reality technology where users can have virtual experience in a training task and working environment. Widely used in the medical and military fields, virtual-reality-based training systems are also useful in industrial fields, such as the aerospace industry, since they show superiority over real training environments in terms of accessibility, safety, and cost. The shipbuilding industry is known as a labor-intensive industry that demands a lot of skilled workers. In particular, painting jobs in the shipbuilding industry require a continuous supplement of human resources since many workers leave due to the poor working environment. In this paper, the authors present a virtual-reality-based training system for spray painting tasks in the shipbuilding industry. The design issues and implementation details of the training system are described, and also its advantages and shortcomings are discussed based on use cases in actual work fields.

Implementation of PLM Functional and Architecture between ETO Shipbuilding and ATO Industries (주문형 설계 조선산업과 주문형 조립산업의 특성에 따른 PLM 기능과 구조 설계)

  • Kim, Seung-Hyun;Jeon, Jung-Ik;Lee, Jang-Hyun;Lee, Won-Joon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.6
    • /
    • pp.425-439
    • /
    • 2010
  • The current challenge with which most shipyards are forced is to reduce the design time and the time-to-delivery because of explosive order of shipbuilding. Collaborative design and product data management have become important to reduce the lead time. Furthermore, enterprise information technologies such as ERP (Enterprise Resource Planning), SCM (Supply Chain management), and APS (Advanced Planning System) requires the collaborative environment. Also, manufacturing environment has been considered as a topic of strategic interest to get shorter product lifecycles in shipyards. Most shipyards have chosen an environment of ETO (Engineering To Order) strategy which designs and produces new products in response to various requirements of customer, rules and regulations. In the ATO (Assemble 10 Order) environment, most component parts have been designed to be procured or produced on the order requirement. The basic distinction between the ETO and ATO is the timing of the design. Thus in the ATO environment, it is more flexible in reducing the lead time to meet the specified requirements of customers. However, the ETO strategy requires new ship design process and ship product structures that are linked with the implementation of PLM. And, the function and architecture of current PLM solution has been designed based upon ATO environment properly. This paper presents the PLM architecture which effectively reflects the characteristics of shipbuilding. 4-layer architecture model is suggested to implement the PLM system. Also, implemented functions of ship PLM is explained in order to make a practical guidance for ship PLM implementation.

Conceptual Design for Fully Electrified Car Ferry Powered by Removable Battery System (이동식 전원공급장치 기반 전기추진차도선의 개념설계 연구)

  • Lee, Jun-Ho;Jang, Dong-Won;Jin, Song-Han;Shin, Seung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.856-866
    • /
    • 2021
  • The increasing international awareness regarding air pollutant reduction has resulted in increasing demand for eco-friendly ships; hence, electric ships are being actively developed by various countries. Presently, studies on electric ships are mainly focused on electric propulsion systems and electric motors. However, from the ship perspective, there are no studies on conceptual designs for coastal car ferries powered by removable power supply systems. In the present study, the main research consideration is regarding the conceptual design of a fully electrified car ferry using a battery-based removable system as the main power source. By analyzing the dimensions of more than 100 domestic coastal car ferries, the main criteria satisfying the requirements for developing a suitable vessel were derived, and a study on intact/damage stability was conducted considering the application of a removable battery truck. Further analyses of the problems concerning the conceptual design were also performed to derive solutions.

Estimation of Welding Material Quantity for Shipbuilding at Early Design Stage based on Three-dimensional Geometric Information (3차원 선박형상정보를 활용한 설계초기단계 용접물량 산출)

  • Lee, Jeong-Hoon;Byun, Seok-Ho;Nam, Jong-Ho;Kang, Tae-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • These days, shipbuilding companies are making an effort to adopt the IT technology in order to improve the production efficiency. One such effort is to utilize a planning and scheduling system to predict the production cost in advance. In this system, assessing the welding material quantity is an important factor. Unfortunately, obtaining the welding material quantity in the early design stage is extremely difficult because the detailed production information, which is essential in deriving the cost associated with welding, is normally available at a later stage. This paper aims at developing a computerized program that produces an index to estimate the welding material quantity in the early design stage. By using only three-dimensional geometric information, the program analyzes the production process and estimates the welding material quantity at any design or production stage when no production information is available. The results can be used for the planning and scheduling system.

Assessment of surface ship environment adaptability in seaways: A fuzzy comprehensive evaluation method

  • Jiao, Jialong;Ren, Huilong;Sun, Shuzheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.344-359
    • /
    • 2016
  • Due to the increasing occurrence of maritime accidents and high-level requirements and modernization of naval wars, the concept of ship environment adaptability becomes more and more important. Therefore, it is of great importance to carry out an evaluation system for ship environment adaptability, which contributes to both ship design and classification. This paper develops a comprehensive evaluation system for ship environment adaptability based on fuzzy mathematics theory. An evaluation index system for ship environment adaptability is elaborately summarized first. Then the analytic hierarchy process (AHP) and entropy weighting methods are applied to aggregate the evaluations of criteria weights for each criterion and the corresponding subcriteria. Next, the multilevel fuzzy comprehensive evaluation method is applied to assess the ship integrative environment adaptability. Finally, in order to verify the proposed approach, an illustrative example for optimization and evaluation of five ship alternatives is adopted. Moreover, the influence of criteria weights, membership functions and fuzzy operators on the results is also analyzed.

Sensitivity Study on SCR Design for Spread-Moored FPSO in West Africa

  • Yoo, Kwang-Kyu;Joo, Youngseok
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.111-120
    • /
    • 2017
  • It is generally acknowledged that the Steel Catenary Riser (SCR) is the most cost-effective riser type for deep-water offshore fields among various risers, including the SCR, flexible riser, and hybrid riser. However, in West Africa, the SCR type may not be suitable for FPSO systems because the large vertical motion of the floater brings about a considerable riser dynamic response. In this paper, an SCR system is designed for the FPSO in the West African field, where the use of a hybrid riser has been preferred. The proposed SCR configuration fulfills the design criteria of the API, such as the strength check and fatigue life. Moreover, a sensitivity analysis is also carried out to improve the certainty in the SCR design of a deep-water FPSO. The parameters affecting the strength and fatigue performance of the SCR are considered.

Development of Internet-based Basic Planning System for Ships (인터넷 기반의 선박 기본계획 지원시스템 개발)

  • Lee S.-S.;Lee J.-K.;Lee K.-H.;Park J.-W.;Kim S.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.406-415
    • /
    • 2004
  • The industrial environment for shipbuilding in 21st century requires increase in few type of ships and marine structures, international cooperation and globalization, while virtual enterprise environment is rapidly establishing. On the other hand, more and more efforts will be spent on internet based distributed and collaborative environment rather than being spent on unit level automations such as CAD, CAM and CAE, and the link between them. Recent internet technology and information technology in heterogeneous environment are being applied in shipbuilding industry as well as in other industries. While these technology are rapidly adopted in major shipyards, many small and medium-sized shipyards does not have enough resources to introduce system designed for large enterprise. In this paper, a prototype of Internet technology based basic planning system is implemented for the small and medium sized shipyards based on the internet technology and concurrent engineering concept. First, the system is designed from the user requirements. Then standardized development environment and tools are selected. These tools are used for defining and evaluating core application technologies for the system development. This can guarantee the survival of small and medium-sized shipyards in 21st century industrial environment.