• 제목/요약/키워드: shear capacity formula

검색결과 75건 처리시간 0.024초

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

고강도 경량콘크리트를 사용한 철근콘크리트 T 형보의 전단성능 (A Study on Shear Capacity of High Strength Lightweight Reinforced Concrete T-Beams)

  • 김진수;김원호;박성무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.220-225
    • /
    • 1993
  • This paper is an experimental study on shear capacity of the high strength lightweight reinforced concrete beams with shear-depth ratio between 1.5 and 2.5. Thirteen T & rectangular beams were tested to determine their diagonal cracking and ultimate shear capacity. The major variables are shear span-depth ratio (a/d=1.5, 2.0, 2.5), concrete compressive strength(f'c=210, 24., 270㎏/㎠) and tensile steel ratio( =0.6, 1.2%). Based on results obtained from experiment of high strength lightweight reinforced concrete Beam & normal concrete, the following conclusions were drawn. (1) The shear capacity of high-strength lightweight concrete is less 15% than that of normal concrete under same condition. (2) As the results of Comparing this experimental datas with other various formulas. It is regarded that ACI 318-89 shear strength formula related tensile strength is proper to design formula of shear strength of high-strength lightweight reinforced concrete using lightweight concrete.

  • PDF

Shear strength prediction of high strength steel reinforced reactive powder concrete beams

  • Qi-Zhi Jin;Da-Bo He;Xia Cao;Feng Fu;Yi-Cong Chen;Meng Zhang;Yi-Cheng Ren
    • Advances in concrete construction
    • /
    • 제17권2호
    • /
    • pp.75-92
    • /
    • 2024
  • High Strength steel reinforced Reactive Powder Concrete (RPC) Beam is a new type of beams which has evident advantages than the conventional concrete beams. However, there is limited research on the shear bearing capacity of high-strength steel reinforced RPC structures, and there is a lack of theoretical support for structural design. In order to promote the application of high-strength steel reinforced RPC structures in engineering, it is necessary to select a shear model and derive applicable calculation methods. By considering the shear span ratio, steel fiber volume ratio, longitudinal reinforcement ratio, stirrup ratio, section shape, horizontal web reinforcement ratio, stirrup configuration angle and other variables in the shear test of 32 high-strength steel reinforced RPC beams, the applicability of three theoretical methods to the shear bearing capacity of high-strength steel reinforced RPC beams was explored. The plasticity theory adopts the RPC200 biaxial failure criterion, establishes an equilibrium equation based on the principle of virtual work, and derives the calculation formula for the shear bearing capacity of high-strength steel reinforced RPC beams; Based on the Strut and Tie Theory, considering the softening phenomenon of RPC, a failure criterion is established, and the balance equation and deformation coordination condition of the combined force are combined to derive the calculation formula for the shear bearing capacity of high-strength reinforced RPC beams; Based on the Rankine theory and Rankine failure criterion, taking into account the influence of size effects, a calculation formula for the shear bearing capacity of high-strength reinforced RPC beams is derived. Experimental data is used for verification, and the results are in good agreement with a small coefficient of variation.

Experimental study on shear capacity of circular concrete filled steel tubes

  • Xiao, Congzhen;Cai, Shaohuai;Chen, Tao;Xu, Chunli
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.437-449
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have recently seen wide use in China, but studies of the shear problem of CFST are inadequate. This paper presents an experimental study on the shear capacity of circular concrete filled steel tube (CCFT) specimens with and without axial compression force. Shear capacity, ductility, and damage modes of CCFTs were investigated and compared. Test results revealed the following: 1) CCFTs with a small shear span ratio may fail in shear in a ductile manner; 2) Several factors including section size, material properties, shear span ratio, axial compression ratio, and confinement index affect the shear capacity of CCFTs. Based on test results and analysis, this paper proposes a design formula for the shear capacity of CCFTs.

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

Simplification of the Flexural Capacity of SFR-UHPCC Rectangular Beam

  • 오향국;한상묵;김성욱;강수태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.526-529
    • /
    • 2006
  • In this paper, flexure behavior of steel fiber reinforcement ultra high performance cementations composites (SFR-UHPCC) has been analyzed by equivalent stress block. Pulling-out tensile force of steel fiber with concrete matrix was induced. An appropriate flexure evaluation formula, i.e. semi-analytical formula, was established based on rectangular cross section beam for comparing with shear capacity and ultimate load of SFR-UHPCC beam. Finally, the semi-analytical formula has been simplified for the convenience of design work. Experimental results and theoretical shear strength are shown to compare with the formula proposed by this paper. The theory formula has a good prediction of failure type of SFR-UHPCC.

  • PDF

산업부산물을 활용한 고강도경량 콘크리트보의 거동 특성 (A Study on the Behavior Properties of the High-Strength Lightweight Concrete Beam Using the Industrial By-Products)

  • 이승조;박정민;손영호;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.188-191
    • /
    • 2004
  • We experimented variables of four kinds(a/d=1.5, 2.5, 3.5, 4.5) of shear span ratio to consider a structural characteristic of high-strength lightweight concrete beam used industrial by-product. Through the research of serials, the more increase of shear span ratio, the more ductility is superior. Rating the capacity of high-strength concrete beam and the capacity of lightweight concrete beam, in existing lightweight concrete beam evaluation formula, if a shear strength formula for normal concrete multiplies 0.85(reduction factor), it is rated as safety side over shear span ratio 2.5, but it is riskful at low shear span ratio. Therefore it is important that these factors are considered as the evaluation.

  • PDF

Experimental investigation on shear capacity of partially prefabricated steel reinforced concrete columns

  • Yang, Yong;Chen, Yang;Zhang, Jintao;Xue, Yicong;Liu, Ruyue;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.73-82
    • /
    • 2018
  • This paper experimentally and analytically elucidates the shear behavior and shear bearing capacity of partially prefabricated steel reinforced concrete (PPSRC) columns and hollow partially prefabricated steel reinforced concrete (HPSRC) columns. Seven specimens including five PPSRC column specimens and two HPSRC column specimens were tested under static monotonic loading. In the test, the influences of shear span aspect ratio and difference of cast-in-place concrete strength on the shear behavior of PPSRC and HPSRC columns were investigated. Based on the test results, the failure pattern, the load-displacement behavior and the shear capacity were focused and analyzed. The test results demonstrated that all the column specimens failed in shear failure mode with high bearing capacity and good deformability. Smaller shear span aspect ratio and higher strength of inner concrete resulted in higher shear bearing capacity, with more ductile and better deformability. Furthermore, calculation formula for predicting the ultimate shear capacity of the PPSRC and HPSRC columns were proposed on the basis of the experimental results.

연속 캡 형상 전단연결재의 전단 내력에 관한 실험 연구 (Experimental Study on the Shear Capacity of Continuous Cap-Type Shear Connector)

  • 오명호;김영호;정석창;김명한
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.91-99
    • /
    • 2019
  • The push-out tests have been conducted on the specimens which consist of the steel beam with U-shape section and the continuous cap-type shear connector. Existing formulas for the elevation of shear connector capacity were investigated on the basis of test results. The shear capacities of continuous cap-type shear connectors distinctly declined as the diameters of side-hole in the shear connector increased. The rebars through side-hole for the transverse reinforcement improved the shear capacity of continuous cap-type connector by 20 to 30 percent. It was not feasible to obtain the appropriate capacity values of continuous cap-type shear connectors made of thin steel plate like those of in this study, using the existing formulas. The new formula for reflecting the shear strength of penetrative bars was proposed based on the shear equation of Eurocode 4. The slip capacities of continuous cap-type shear connectors were shown to exceed the limit value of 6mm for the sufficiently ductile behavior.

철근콘크리트 깊은 보의 전단 내력에 대한 개구부 보강 효과 (Effect of Reinforcement for Web Opening on Shear Strength of Reinforced Concrete Deep Beams)

  • 이종권;최윤철;이용택
    • 한국전산구조공학회논문집
    • /
    • 제20권6호
    • /
    • pp.699-708
    • /
    • 2007
  • 일반적으로 깊은 보의 개구부 보강을 할 경우 개구부 주변의 부족한 내력에 대해 수직, 수평, 대각, 혹은 혼합된 배근 형태를 사용하게 되는데, 경제성과 구조적 안전성을 고려하기 위해서는 각 배근 형태 및 방법에 따른 깊은 보의 거론 평가와 적절한 조합에 관한 연구가 절실히 필요하다. 이에 본 연구에서는 개구부 보강방법을 변수로 한 simulation 모델을 통해 수직, 수평 보강의 효과에 대해 해석적으로 검증을 한 후, 각 규준에서 제시하고 있는 개구부가 있는 깊은 보의 전단 내력식을 분석하고 해당 식을 보완하여 단순지지 1경간 및 연속 경간에 적용 가능한 전단 내력 산정식을 제안하고자 한다.