DOI QR코드

DOI QR Code

Shear strength prediction of high strength steel reinforced reactive powder concrete beams

  • Qi-Zhi Jin (Guangxi Key Laboratory of Green Building Materials and Construction Industrialization, Guilin University of Technology) ;
  • Da-Bo He (School of Civil Engineering, Nanning College of Technology) ;
  • Xia Cao (Department of Engineering, School of Science & Technology, City, University of London) ;
  • Feng Fu (Department of Engineering, School of Science & Technology, City, University of London) ;
  • Yi-Cong Chen (College of Civil Engineering, Fuzhou University) ;
  • Meng Zhang (Infrastructure construction department, Guilin University of Technology) ;
  • Yi-Cheng Ren (Jiangsu University Jingjiang College)
  • Received : 2022.05.10
  • Accepted : 2024.07.15
  • Published : 2024.02.25

Abstract

High Strength steel reinforced Reactive Powder Concrete (RPC) Beam is a new type of beams which has evident advantages than the conventional concrete beams. However, there is limited research on the shear bearing capacity of high-strength steel reinforced RPC structures, and there is a lack of theoretical support for structural design. In order to promote the application of high-strength steel reinforced RPC structures in engineering, it is necessary to select a shear model and derive applicable calculation methods. By considering the shear span ratio, steel fiber volume ratio, longitudinal reinforcement ratio, stirrup ratio, section shape, horizontal web reinforcement ratio, stirrup configuration angle and other variables in the shear test of 32 high-strength steel reinforced RPC beams, the applicability of three theoretical methods to the shear bearing capacity of high-strength steel reinforced RPC beams was explored. The plasticity theory adopts the RPC200 biaxial failure criterion, establishes an equilibrium equation based on the principle of virtual work, and derives the calculation formula for the shear bearing capacity of high-strength steel reinforced RPC beams; Based on the Strut and Tie Theory, considering the softening phenomenon of RPC, a failure criterion is established, and the balance equation and deformation coordination condition of the combined force are combined to derive the calculation formula for the shear bearing capacity of high-strength reinforced RPC beams; Based on the Rankine theory and Rankine failure criterion, taking into account the influence of size effects, a calculation formula for the shear bearing capacity of high-strength reinforced RPC beams is derived. Experimental data is used for verification, and the results are in good agreement with a small coefficient of variation.

Keywords

Acknowledgement

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51368013) and Guangxi Key Laboratory of Green Building Materials and Construction Industrialization (No. 19-J-21-6), The authors wish to acknowledge the sponsors. However, any opinions, findings, conclusions and recommendations presented in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

References

  1. Baby, F., Marchand, P., Atrach, M. and Toutlemonde, F. (2013), "Analysis of flexure-shear behavior of UHPFRC beams based on stress field approach", Eng. Struct., 56, 94-206. https://doi.org/10.1016/j.engstruct.2013.04.024
  2. Baby, F., Marchand, P. and Toutlemonde, F. (2014), "Shear behavior of ultrahigh performance fiber-reinforced concrete beams. I: Experimental investigation", J. Struct. Eng., 140(5), 04013111. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000907
  3. Bahij, S., Adekunle, S.K., Al-Osta, M., Ahmad, S., Al-Dulaijan, S.U. and Rahman, M.K. (2018), "Numerical investigation of the shear behavior of reinforced ultra-high-performance concrete beams", Struct. Concrete, 19, 305-317. https://doi.org/10.1002/suco.201700062
  4. Bazant, Z.P. (1997), "Fracturing truss model: size effect in shear failure of reinforced concrete", J. Eng. Mech., 123(12), 1276-1288. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1276)
  5. Cao, X., Deng, X.F., Jin, L.Z., Fu, F. and Qian, K. (2021), "Shear capacity of reactive powder concrete beams using high-strength steel reinforcement", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 174(4), 276-291. https://doi.org/10.1680/jstbu.19.00051
  6. Cevik, A. and Ozturk, S. (2009), "Neuro-fuzzy model for shear strength of reinforced concrete beams without web reinforcement", Civil Eng. Environ. Syst., 26(3), 263-277. https://doi.org/10.1080/10286600802109927
  7. Chen, W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York, USA.
  8. Chen, B. (2007), "Study on Shear Behavior of Prestressed RPC Beams", Master Thesis; Changsha: Hunan University, China.
  9. Choi, K.K., Hong-Gun, P. and Wight, J.K. (2007), "Unified shear strength model for reinforced concrete beams-Part I: Development", ACI Struct. J., 104, 142-152. https://doi.org/10.14359/18526
  10. Deng, Z., Jumbe, R.D. and Yuan, C. (2014a), "Bonding between high strength rebar and reactive powder concrete", Comput. Concrete, Int. J., 13(3), 411-421. https://doi.org/10.12989/cac.2014.13.3.411
  11. Deng, Z.C., Zhou, D.Z. and Cheng, S.K. (2014b), "Shear capacity of reinforced RPC beams", J. Harbin Univ Eng., 12, 1512-1518.
  12. Ghosh, P., Konecny, P., Lehner, P. and Tikalsky, P.J. (2017), "Probabilistic time-dependent sensitivity analysis of HPC bridge deck exposed to chlorides", Comput. Concrete, Int. J., 19(3), 305-313. https://doi.org/10.12989/cac.2017.19.3.305
  13. Gulsan, M.E., Abdulhaleem, K.N., Kurtoglu, A.E. and Cevik, A. (2018), "Size effect on strength of Fiber-Reinforced Self-Compacting Concrete (SCC) after exposure to high temperatures", Comput. Concrete, Int. J., 21(6), 681-695. https://doi.org/10.12989/cac.2018.21.6.681
  14. Hasegawa, T., Shioya, T. and Okada, T. (1985), "Size effect on splitting tensile strength of concrete", Proceedings of the 7th Conference of the Japan Concrete Institute, Japan, June.
  15. Hoang, A.L. and Fehling, E. (2017), "Numerical analysis of circular steel tube confined UHPC stub columns", Comput. Concrete, Int. J., 19(3), 263-273. https://doi.org/10.12989/cac.2017.19.3.263
  16. Hsu, T.T.C. and Zhang, L.X. (1997), "Nonlinear analysis of membrane elements by fixed-angle softened-truss model", ACI Struct. J., 94(5), 483-492. https://doi.org/10.14359/498
  17. Jiang, D.H. (1979), "Plastic solution of shear strength of reinforced concrete beams" Journal of Tongji University, 1979 (05): 29-43.
  18. Jin, L.Z., Chen, X., Fu, F., Deng, X.F. and Qian, K. (2020), "Shear strength of fibre-reinforced reactive powder concrete I-shaped beam without stirrups", Magaz. Concrete Res., 72(21), 1112-1124. https://doi.org/10.1680/jmacr.18.00525
  19. Kang, P. (2012), "Design and calculation methods of reactive powder concrete members under bending, shearing and compression", Master Thesis; Beijing Jiaotong University, Beijing, China.
  20. Lai, J. and Sun, W. (2010), "Dynamic tensile behaviour of Reactive Powder Concrete by Hopkinson bar experiments and numerical simulation", Comput. Concrete, Int. J., 7(1), 83-86. https://doi.org/10.12989/cac.2010.7.1.083
  21. Lim, W.Y. and Hong, S.G. (2016), "Shear tests for ultra-high performance fiber reinforced concrete (UHPFRC) beams with shear reinforcement", Int. J. Concrete Struct. Mater., 10(2), 177-188. https://doi.org/10.1007/s40069-016-0145-8
  22. Lu, Q., Jiang, Y.S. and Ding, D.J. (1988), "Calculation for shear strength of simply supported reinforced concrete beams with rectangular section by plastic theory", J. Nanjing Inst. Technol., 1988(01), 23-29. https://kns.cnki.net/kcms2/article/abstract?v=62vjN2oCPVbnmBzWiks2VdKeJ6O40qXlfddhI_agBFGMHHEqeoOjHtlMpacMFFzD4L49C8aFEnPEKS70WppaQqut5R5qd0EaTJSYsH1A29xuceYeE8KRLbEt_OL8Slo9K3E3lEI7aXSX9bJUszxikRiTfQeVKqTVKx6_OXkYPlI_WRbmqcNWBSWZungPDSVS&uniplatform=NZKPT&language=CHS
  23. MacGregor, J.G. and Walters, J.RV. (1967), "Analysis of inclined cracking shear in slender reinforced concrete beams", ACI J., 64, 644-653. https://doi.org/10.14359/7592
  24. Marcinczak, D., Trapko, T. and Musial, M. (2019), "Shear strengthening of reinforced concrete beams with PBO-FRCM composites with anchorage", Compos. Part B: Eng., 158, 149-161. https://doi.org/10.1016/j.compositesb.2018.09.061
  25. Meszoly, T. and Randl, N. (2018), "Shear behavior of fiber-reinforced ultra-high performance concrete beams", Eng. Struct., 168, 119-127. https://doi.org/10.1016/j.engstruct.2018.04.075
  26. Morsch, E. (1909), Concrete Steel Construction, (English translation of "Der Eisenbetonbau", 1902), McGraw-Hill, New York.
  27. Nematzadeh, M. and Poorhosein, R. (2017), "Estimating properties of reactive powder concrete containing hybrid fibers using UPV", Comput. Concrete, Int. J., 20(4), 491-502. https://doi.org/10.12989/cac.2017.20.4.491
  28. Nielsen, M.P. (1984), "Limit analysis and concrete plasticity", Prentice-Hall. Inc., Englewwood Cliffs, NJ, USA.
  29. Noshiravani, T. and Bruhwiler, E. (2014), "Analytical model for predicting response and flexure-shear resistance of composite beams combining reinforced ultrahigh performance fiber-reinforced concrete and reinforced concrete", J. Struct. Eng., 140(6), 04014012. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000902
  30. Pansuk, W., Nguyen, T.N., Sato, Y., Den Uijl, J.A. and Walraven, J.C. (2017), "Shear capacity of high performance fiber reinforced concrete I-beams", Constr. Build. Mater., 157, 182-193. https://doi.org/10.1016/j.conbuildmat.2017.09.057
  31. Poorhosein, R. and Nematzadeh, M. (2018), "Mechanical behavior of hybrid steel-PVA fibers reinforced reactive powder concrete", Comput. Concrete, Int. J., 21(2), 167-179. https://doi.org/10.12989/cac.2018.21.2.167
  32. Pourbaba, M., Joghataie, A. and Mirmiran, A. (2018), "Shear behavior of ultra-high performance concrete", Constr. Build. Mater., 183, 554-564. https://doi.org/10.1016/J.CONBUILDMAT.2018.06.117
  33. Qi, J., Ma, Z.J. and Wang, J. (2016), "Shear strength of UHPFRC beams: Mesoscale fiber-matrix discrete model", J. Struct. Eng., 14(3), 04016209. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001701
  34. Ridha, M.M., Sarsam, K.F. and Al-Shaarbaf, I.A. (2018), "Experimental study and shear strength prediction for reactive powder concrete beams", Case Stud. Constr. Mater., 8, 434-446. https://doi.org/10.1016/j.cscm.2018.03.002
  35. Ridha, M.M., Al-Shaarbaf, I.A. and Sarsam, K.F. (2020), "Experimental study on shear resistance of reactive powder concrete beams without stirrups", Mech. Adv. Mater. Struct., 27(12), 1006-1018. https://doi.org/10.1080/15376494.2018.1504258
  36. Ritter, W. (1899), Die bauweise Hennebique, Schweizeitung, Zurich, Germany.
  37. Thiemicke, J. and Fehling, E. (2016), "Proposed model to predict the shear bearing capacity of UHPC-beams with combined reinforcement", Proceedings of the 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials, Kassel, Germany, March.
  38. Tung, N.D. and Tue, N.V. (2018), "Shear resistance of steel fiber-reinforced concrete beams without conventional shear reinforcement on the basis of the critical shear band concept", Eng. Struct., 168, 698-707. https://doi.org/10.1016/j.engstruct.2018.05.014
  39. Vecchio, F. and Collins, M.P. (1981), "Stress-strain characteristics of reinforced concrete in pure shear", Final report; In: IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, International Association for Bridge and Structural Engineering, pp. 211-225.
  40. Vecchio, F.J. and Collins, M.P. (1996), "Analytical model for shear critical reinforced-concrete members", J. Struct. Eng., 122(9), 1123-1124. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459)
  41. Voo, Y.L., Foster, S.J. and Gilbert, R.I. (2006), "Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups", J. Adv. Concrete Technol., 4(1), 123-132. https://doi.org/10.3151/jact.4.123
  42. Voo, Y.L., Poon, W.K. and Foster, S.J. (2010), "Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups", J. Struct. Eng., 136(11), 1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
  43. Wu, X.G. and Han, S.M. (2009), "First diagonal cracking and ultimate shear of I-shaped reinforced girders of ultra high-performance fiber reinforced concrete without stirrup", Int. J. Concrete Struct. Mater., 3(1), 47-56. https://doi.org/10.4334/IJCSM.2009.3.1.047
  44. Xia, Z.X. (2007), "Study on inclined plane shear capacity of reactive powder concrete beams", Master Thesis; Beijing Jiaotong University, Beijing, China.
  45. Xu, X.Z. (2015), "Theoretical analysis of shear capacity of FRP hooped concrete beams", Master Thesis; Zhengzhou University, Zhengzhou, China.
  46. Yan, J.P. (2011), "Experimental study on shear strength of reactive powder concrete", Master Thesis; Beijing Jiaotong University, Beijing, China.
  47. Zhao, G.F. and Huang, C.Q. (1992), Research and application of fiber coagulation; Dalian University of Technology.
  48. Zhao, J., Gao, D.Y. and Zhu, H.T (2005), "Plastic limit analysis of shear capacity of oblique section of steel fiber reinforced concrete beams", Quarterly J. Mech., 2, 235-240.