• Title/Summary/Keyword: shallow beams

Search Result 22, Processing Time 0.024 seconds

DYNAMIC BEHAVIOR OF CRACKED BEAMS AND SHALLOW ARCHES

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.869-890
    • /
    • 2022
  • We develop a rigorous mathematical framework for studying dynamic behavior of cracked beams and shallow arches. The governing equations are derived from the first principles, and stated in terms of the subdifferentials of the bending and the axial potential energies. The existence and the uniqueness of the solutions is established under various conditions. The corresponding mathematical tools dealing with vector-valued functions are comprehensively developed. The motion of beams and arches is studied under the assumptions of the weak and strong damping. The presence of cracks forces weaker regularity results for the arch motion, as compared to the beam case.

Shear behavior of steel reinforced concrete shallow floor beam: Experimental and theoretical study

  • Chen, Yang;Ren, Chong;Yuan, Yuqing;Yang, Yong
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.677-684
    • /
    • 2022
  • This paper reports experimental investigation on shear behavior of steel reinforced concrete (SRC) shallow floor beam, where the steel shape is embedded in concrete and the high strength bolts are used to transfer the shear force along the interface between the steel shape and concrete. Six specimens were conducted aiming to provide information on shear performance and explore the shear bearing capacity of SRC shallow floor beams. The effects of the height of concrete slab, the size and the type of the steel section on shear performance of beams were also analyzed in the test. Based on the strut-and-tie model, the shear strength of the SRC shallow floor beam was proposed. Experimental results showed that composite shallow floor beam exhibited satisfactory composite behavior and all of the specimen failed in shear failure. The shear bearing capacity increased with the increasing of height of concrete slab and the size of steel shape, and the bearing capacities of beam specimens with castellated steel shape was slightly lower than those of specimens with H-shaped steel section. Furthermore, the calculations for evaluating the shear bearing capacity of SRC shallow floor beam were verified to be reasonable.

Ultimate behavior of composite beams with shallow I-sections

  • Gorkem, Selcuk Emre;Husem, Metin
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.493-509
    • /
    • 2013
  • Bending behavior of reinforced concrete slabs encased over shallow I-sections at different levels of compression heads were investigated in present study. 1500 mm long I-sections were used to create composite slabs. Compression heads of monolithic experimental members were encased at different levels into the concrete slabs. Shear connections were welded over some of the I-sections. The testing was carried out in accordance with the principles of four-point loading. Results revealed decreasing load bearing and deflection capacities of composite beams with increasing encasement depths into concrete. Mechanical properties of concrete and reinforcing steel were also examined. Resultant stresses calculated for composite beams at failure were found to be less than the yield strength of steel beams. Test results were discussed with regard to shear and slip effect.

Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths

  • Xing, G.H.;Wu, T.;Niu, D.T.;Liu, X.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.429-449
    • /
    • 2013
  • Current Design Codes for Reinforced Concrete (RC) interior beam-column joints are based on limited experimental studies on the seismic behavior of eccentric joints. To supplement existing information, an experimental study was conducted that focused on the effect of eccentricity of the deeper beams with respect to the shallow beams. A total of eight one-third scale interior joints with beams of different depths were subjected to reverse cyclic loading. The primary variables in the test specimens were the amount of joint transverse reinforcement and the cross section of the shallow beams. The overall performance of each test assembly was found to be unsatisfactory in terms of joint shear strength, stiffness, energy dissipation and shear deformation. The results indicated that the vertical eccentricity of spandrel beams in this type of joint led to lower capacity in joint shear strength and severe damage of concrete in the joint core. Increasing the joint shear reinforcement was not effective to alter the failure mode from joint shear failure to beam yielding which is favorable for earthquake resistance design, whereas it was effective to reduce the crack width at the small loading stages. Based on the observed behavior, the shear stress of the joint core was suggested to be kept as low as possible for a safe and practical design of this type of joint.

Experimental study on innovative tubular web RBS connections in steel MRFs with typical shallow beams

  • Saleh, Aboozar;Zahrai, Seyed M.;Mirghaderi, Seyed R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.785-808
    • /
    • 2016
  • An innovative Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS), has been recently introduced and its performance has been numerically investigated in some earlier studies. The TW-RBS connection is a kind of accordion-web RBS connection in which part of the flat web of the beam is replaced by a steel tube at the expected region of the plastic hinge. This paper presents experimental results of three TW-RBS connections under cyclic loading. Obtained results indicated that TW-RBS reduces contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Based on the experimental results, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam such that only local buckling of the beam flange at the center of the reduced section was observed during the tests. In order to achieve a better understanding, behavior of all TW-RBS specimens are also numerically investigated and compared with those of experimental results.

EQUATIONS OF MOTION FOR CRACKED BEAMS AND SHALLOW ARCHES

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.405-432
    • /
    • 2022
  • Cracks in beams and shallow arches are modeled by massless rotational springs. First, we introduce a specially designed linear operator that "absorbs" the boundary conditions at the cracks. Then the equations of motion are derived from the first principles using the Extended Hamilton's Principle, accounting for non-conservative forces. The variational formulation of the equations is stated in terms of the subdifferentials of the bending and axial potential energies. The equations are given in their abstract (weak), as well as in classical forms.

Steel fibre reinforced concrete for elements failing in bending and in shear

  • Barros, Joaquim A.O.;Lourenco, Lucio A.P.;Soltanzadeh, Fatemeh;Taheri, Mahsa
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.1-27
    • /
    • 2013
  • Discrete steel fibres can increase significantly the bending and the shear resistance of concrete structural elements when Steel Fibre Reinforced Concrete (SFRC) is designed in such a way that fibre reinforcing mechanisms are optimized. To assess the fibre reinforcement effectiveness in shallow structural elements failing in bending and in shear, experimental and numerical research were performed. Uniaxial compression and bending tests were executed to derive the constitutive laws of the developed SFRC. Using a cross-section layered model and the material constitutive laws, the deformational behaviour of structural elements failing in bending was predicted from the moment-curvature relationship of the representative cross sections. To evaluate the influence of the percentage of fibres on the shear resistance of shallow structures, three point bending tests with shallow beams were performed. The applicability of the formulation proposed by RILEM TC 162-TDF for the prediction of the shear resistance of SFRC elements was evaluated. Inverse analysis was adopted to determine indirectly the values of the fracture mode I parameters of the developed SFRC. With these values, and using a softening diagram for modelling the crack shear softening behaviour, the response of the SFRC beams failing in shear was predicted.

Principal Component and Multiple Regression Analysis for Steel Fiber Reinforced Concrete (SFRC) Beams

  • Islam, Mohammad S.;Alam, Shahria
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.303-317
    • /
    • 2013
  • This study evaluates the shear strength of steel fiber reinforced concrete (SFRC) beams from a database, which consists of extensive experimental results of 222 SFRC beams having no stirrups. In order to predict the analytical shear strength of the SFRC beams more precisely, the selected beams were sorted into six different groups based on their ultimate concrete strength (low strength with $f_c^{\prime}$ <50 MPa and high strength with $f_c^{\prime}$ <50 MPa), span-depth ratio (shallow beam with $a/d{\geq}2.5 $and deep beam with a/d<2.5) and steel fiber shape (plain, crimped and hooked). Principal component and multiple regression analyses were performed to determine the most feasible model in predicting the shear strength of SFRC beams. A variety of statistical analyses were conducted, and compared with those of the existing equations in estimating the shear strength of SFRC beams. The results showed that the recommended empirical equations were best suited to assess the shear strength of SFRC beams more accurately as compared to those obtained by the previously developed models.

Effective Analysis of Beams Using the RKPM (RKPM을 이용한 보의 효과적 해석 방안)

  • 송태한;석병호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-79
    • /
    • 2003
  • In this paper, RKPM is extended for solving moderately thick and thin beams. General Timoshenko beam theory is used for formulation. Shear locking is the main difficulty in analysis of these kinds of structures. Shear relaxation factor, which is formulated using the difference between bending and shear strain energy, and corrected shear rigidity are introduced to overcome shear locking. Analysis results obtained reveal that RKPM using introduced methods is free of locking and very effectively applicable to deep beams as well as shallow beams.

A Novel Large Area Negative Sputter Ion Beam source and Its Application

  • Kim, Steven
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.73-73
    • /
    • 1999
  • A large area negative metal ion beam source is developed. Kinetic ion beam of the incident metal ions yields a whole nucleation and growth phenomena compared to the conventional thin film deposition processes. At the initial deposition step one can engineer the surface and interface by tuning the energy of the incident metal ion beams. Smoothness and shallow implantation can be tailored according to the desired application process. Surface chemistry and nucleation process is also controlled by the energy of the direct metal ion beams. Each individual metal ion beams with specific energy undergoes super-thermodynamic reactions and nucleation. degree of formation of tetrahedral Sp3 carbon films and beta-carbon nitride directly depends on the energy of the ion beams. Grain size and formation of polycrystalline Si, at temperatures lower than 500deg. C is obtained and controlled by the energy of the incident Si-ion beams. The large area metal ion source combines the advantages of those magnetron sputter and SKIONs prior cesium activated metal ion source. The ion beam source produces uniform amorphous diamond films over 6 diameter. The films are now investigated for applications such as field emission display emitter materials, protective coatings for computer hard disk and head, and other protective optical coatings. The performance of the ion beam source and recent applications will be presented.

  • PDF