DOI QR코드

DOI QR Code

Principal Component and Multiple Regression Analysis for Steel Fiber Reinforced Concrete (SFRC) Beams

  • Islam, Mohammad S. (School of Engineering, The University of British Columbia, Okanagan Campus) ;
  • Alam, Shahria (School of Engineering, The University of British Columbia, Okanagan Campus)
  • 투고 : 2013.02.10
  • 심사 : 2013.10.29
  • 발행 : 2013.12.30

초록

This study evaluates the shear strength of steel fiber reinforced concrete (SFRC) beams from a database, which consists of extensive experimental results of 222 SFRC beams having no stirrups. In order to predict the analytical shear strength of the SFRC beams more precisely, the selected beams were sorted into six different groups based on their ultimate concrete strength (low strength with $f_c^{\prime}$ <50 MPa and high strength with $f_c^{\prime}$ <50 MPa), span-depth ratio (shallow beam with $a/d{\geq}2.5 $and deep beam with a/d<2.5) and steel fiber shape (plain, crimped and hooked). Principal component and multiple regression analyses were performed to determine the most feasible model in predicting the shear strength of SFRC beams. A variety of statistical analyses were conducted, and compared with those of the existing equations in estimating the shear strength of SFRC beams. The results showed that the recommended empirical equations were best suited to assess the shear strength of SFRC beams more accurately as compared to those obtained by the previously developed models.

키워드

참고문헌

  1. ACI Committee 318. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (318R-05). Farmington Hills, MI: American Concrete Institute, 443 pp.
  2. Adhikary, B. B., & Mutsuyoshi, H. (2006). Prediction of shear strength of steel fiber RC beams using neural networks. Construction and Building Materials, 20, 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
  3. Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behaviour of high strength fiber reinforced concrete beams. ACI Structural Journal, 89(2), 176-184.
  4. Batson, G., Jenkins, E., & Spatney, R. (1972). Steel fibers as shear reinforcement in beams. ACI Journal, Proceedings, 69(10), 640-644.
  5. Cho, S., & Kim, Y. (2003). Effects of steel fibers on short beams loaded in shear. ACI Structural Journal, 100(6), 765-774.
  6. Choi, K. K., & Park, H. G. (2007). Unified shear strength model for reinforced concrete beams-Part II: Verification and simplified method. ACI Structural Journal, 104(2), 153-168.
  7. Choi, K. K., Park, H. G., & Wight, J. M. (2007). Shear strength of steel fiber-reinforced concrete beams without web reinforcement. ACI Structural Journals, 104, 12-21.
  8. Cucchiara, C., Mendola, L. L., & Papia, M. (2004). Effectiveness of stirrups and steel fibers as shear reinforcement. Cement & Concrete Composites, 26, 777-786. https://doi.org/10.1016/j.cemconcomp.2003.07.001
  9. Dinh, H. H. (2007). Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. Doctoral Dissertation, University of Michigan, MI.
  10. Dinh, H. H., Parra-Montesinos, G. J., & Wight, J. K. (2010). Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. ACI Structural Journal, 107(5), 597-606.
  11. Dupont, D., & Vandewalle, L. (2003). Shear capacity of concrete beams containing longitudinal reinforcement and steel fibers. In N. Banthia (Ed.), Proceedings of innovations in fiber-reinforced concrete for value, Detroit, Michigan (SP-216, pp. 79-94). Farmington Hills, MI: American Concrete Institute.
  12. Esfahani, M. R., & Rangan, B. V. (1998). Bond between normal strength and high-strength concrete (HSC) and reinforcing bars in splices in beams. ACI Structural Journal, 95(3), 272-280.
  13. Greenough, T., & Nehdi, M. (2008). Shear behaviour of fiber reinforced self-consolidating concrete slender beams. ACI Materials Journal, 105(5), 468-477.
  14. Imam, M., Vandewalle, L., & Mortelmans, F. (1994). Shear capacity of steel fiber high-strength concrete beams. High performance concrete (SP 149, pp. 227-241). Detroit, MI: American Concrete Institute.
  15. Kang, T. H.-K., Kim, W., Kwak, Y.-K., & Hong, S.-G. (2011). Shear testing of steel fiber-reinforced lightweight concrete beams without web reinforcement. ACI Structural Journal, 108(5), 553-561.
  16. Khaloo, A. R., & Kim, N. (1997). Influence of concrete and fiber characteristics on behavior of steel fiber reinforced concrete under direct shear. ACI Materials Journal, 94(6), 592-601.
  17. Khuntia, M., Stojadinovic, B., & Goel, S. (1999). Shear strength of normal and high-Strength fiber reinforced concrete beams without stirrups. ACI Structural Journal, 96(2), 282-290.
  18. Kwak, Y., Eberhard, M. O., Kim, W., & Kim, J. (2002). Shear strength of steel fiber reinforced concrete beams without Stirrups. ACI Structural Journal, 99(4), 530-538.
  19. Li, V. C., Ward, R., & Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Materials Journal, 89(5), 499-508.
  20. Lim, D. H., & Oh, B. H. (1999). Experimental and theoretical investigation on the shear of steel fiber reinforced concrete beams. Engineering Structures, 21, 937-944. https://doi.org/10.1016/S0141-0296(98)00049-2
  21. Madan, S. K., Kumar, G. R., & Singh, S. P. (2007). Steel fibers as replacement of web reinforcement for RCC deep beams in shear. Asian Journal of Civil Engineering (Building and Housing), 8(5), 479-489.
  22. Mansur, M. A., Ong, K. C. G., & Paramasivam, P. (1986). Shear strength of fibrous concrete beams without stirrups. ASCE Journal of Structural Engineering, 112(9), 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  23. Minelli, F., & Vecchio, F. J. (2006). Compression field modeling of fiber-reinforced concrete members under shear loading. ACI Structural Journal, 103(2), 244-252.
  24. Murty, D. S. R., & Venkatacharyulu, T. (1987). Fiber reinforced concrete beams subjected to shear force. In: Proceedings of the international symposium on fiber reinforced concrete (pp. 133-149). Madras, India.
  25. Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. ACI Structural Journal, 84(3), 216-227.
  26. Narayanan, R., & Darwish, I. Y. S. (1988). Fiber concrete beams in shear. ACI Structural Journal, 85(2), 141-149.
  27. Noghabai, K. (2000). Beams of fibrous concrete in shear and bending: Experiment and model. ASCE Journal of Structural Engineering, 126(2), 243-251. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243)
  28. Ramakrishna, G., & Sundararajan, T. (2005). Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement & Concrete Composites, 27(5), 575-582. https://doi.org/10.1016/j.cemconcomp.2004.09.008
  29. Rosenbusch, J., & Teutsch, M. (2003). Shear design with (${\sigma}-{\varepsilon}$) method. In Proceedings of international RILEM workshop on test and design methods for steel fiber reinforced concrete (pp. 105-117). Bochum, Germany: RILEM Publications SARL.
  30. Sharma, A. K. (1986). Shear strength of steel fiber reinforced concrete beams. ACI Journal, 83(4), 624-628.
  31. Shin, S. W., Oh, J. G., & Ghosh, S. K. (1994). Shear behavior of laboratory-sized high strength concrete beams reinforced with bars and steel fibers. Fiber Reinforced Concrete Developments and Innovations, ACI, 142, 181-200.
  32. Swamy, R. N., & Bahia, H. M. (1985). The effectiveness of steel fibers as shear reinforcement. Concrete International, 7(3), 35-40.
  33. Swamy, R. N., Jones, R., & Chiam, A. T. P. (1993). Influence of steel fibers on the shear resistance of lightweight concrete Ibeams. ACI Structural Journal, 90(1), 103-114.
  34. Tan, K. H., Murugappan, K., & Paramasivam, P. (1993). Shear behaviour of steel fiber reinforced concrete beams. ACI Structural Journal, 90(1), 3-11.
  35. Yakoub, H. E. (2011). Shear stress prediction: Steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 108(3), 304-336.

피인용 문헌

  1. Effects of steel fibre and shear reinforcement on static and impact load resistances of concrete beams vol.66, pp.19, 2013, https://doi.org/10.1680/macr.14.00050
  2. Prediction of the Rupture of Circular Sections of Reinforced Concrete and Fiber Reinforced Concrete vol.10, pp.3, 2013, https://doi.org/10.1007/s40069-016-0137-8
  3. Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement vol.10, pp.3, 2013, https://doi.org/10.1007/s40069-016-0148-5
  4. Shear Deformation of Steel Fiber-Reinforced Prestressed Concrete Beams vol.10, pp.3, 2013, https://doi.org/10.1007/s40069-016-0159-2
  5. Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2013, https://doi.org/10.1007/s40069-017-0193-8
  6. Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0197-4
  7. Influence of jute fiber on concrete properties vol.189, pp.None, 2013, https://doi.org/10.1016/j.conbuildmat.2018.09.048
  8. Evaluation of Seismic Performance of Reinforced Concrete Frame Structures in the Context of Big Data vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/4126739
  9. 충격공진을 이용한 콘크리트 상태 평가를 위한 주성분 분석의 적용 vol.34, pp.5, 2013, https://doi.org/10.14346/jkosos.2019.34.5.95
  10. Comparisons Between Pull-Out Behaviour of Various Hooked-End Fibres in Normal-High Strength Concretes vol.13, pp.1, 2013, https://doi.org/10.1186/s40069-019-0337-0
  11. Prediction of properties of the cement incorporated with nanoparticles by principal component analysis (PCA) and response surface regression (RSR) vol.43, pp.p2, 2013, https://doi.org/10.1016/j.matpr.2020.09.170
  12. Self-compacting concrete beams reinforced with steel fiber under flexural loads: A ductility index evaluation vol.42, pp.p5, 2013, https://doi.org/10.1016/j.matpr.2020.12.313
  13. Effect of Wheat Straw Ash on Fresh and Hardened Concrete Reinforced with Jute Fiber vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/6659125
  14. Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning vol.227, pp.None, 2013, https://doi.org/10.1016/j.engstruct.2020.111470
  15. Simplified shear-strength prediction models for steel-fibre-reinforced concrete beams vol.174, pp.2, 2013, https://doi.org/10.1680/jcoma.16.00073
  16. Prediction of the load-carrying capacity of reinforced concrete connections under post-earthquake fire vol.22, pp.6, 2021, https://doi.org/10.1631/jzus.a2000268
  17. Impact of nano ZnO particles on the characteristics of the cement mortar vol.6, pp.4, 2021, https://doi.org/10.1007/s41062-021-00588-9