Acknowledgement
Sudeok Shon is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A1A01065032).
References
- J. M. Ball, Stability theory for an extensible beam, J. Differential Equations 14 (1973), 399-418. https://doi.org/10.1016/0022-0396(73)90056-9
- V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Springer Monographs in Mathematics, Springer, New York, 2010. https://doi.org/10.1007/978-1-4419-5542-5
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, Notas de Matematica, No. 50, North-Holland Publishing Co., Amsterdam, 1973.
- M. N. Cerri and G. C. Ruta, Detection of localised damage in plane circular arches by frequency data, J. Sound Vibration 270 (2004), no. 1, 39-59. https://doi.org/10.1016/S0022-460X(03)00482-6
- E. Emmrich and M. Thalhammer, A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: existence via time discretization, Nonlinearity 24 (2011), no. 9, 2523-2546. https://doi.org/10.1088/0951-7715/24/9/008
- S. Gutman, J. Ha, and S. Lee, Parameter identification for weakly damped shallow arches, J. Math. Anal. Appl. 403 (2013), no. 1, 297-313. https://doi.org/10.1016/j.jmaa.2013.02.047
- S. Gutman, J. Ha, and S. Shon, Equations of motion for cracked beams and shallow arches, Nonlinear Functional Analysis and Applications 27 (2022), no. 2, 405-432. https://doi.org/10.22771/NFAA.2022.27.02.13
- S. Gutman, J. Ha, and S. Shon, Variational setting for cracked beams and shallow arches, Arch. Appl. Mech. 92 (2022), 2225-2236. https://doi.org/10.1007/s00419-022-02174-6
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York, 1972.
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0645-3