Browse > Article
http://dx.doi.org/10.1007/s40069-013-0059-7

Principal Component and Multiple Regression Analysis for Steel Fiber Reinforced Concrete (SFRC) Beams  

Islam, Mohammad S. (School of Engineering, The University of British Columbia, Okanagan Campus)
Alam, Shahria (School of Engineering, The University of British Columbia, Okanagan Campus)
Publication Information
International Journal of Concrete Structures and Materials / v.7, no.4, 2013 , pp. 303-317 More about this Journal
Abstract
This study evaluates the shear strength of steel fiber reinforced concrete (SFRC) beams from a database, which consists of extensive experimental results of 222 SFRC beams having no stirrups. In order to predict the analytical shear strength of the SFRC beams more precisely, the selected beams were sorted into six different groups based on their ultimate concrete strength (low strength with $f_c^{\prime}$ <50 MPa and high strength with $f_c^{\prime}$ <50 MPa), span-depth ratio (shallow beam with $a/d{\geq}2.5 $and deep beam with a/d<2.5) and steel fiber shape (plain, crimped and hooked). Principal component and multiple regression analyses were performed to determine the most feasible model in predicting the shear strength of SFRC beams. A variety of statistical analyses were conducted, and compared with those of the existing equations in estimating the shear strength of SFRC beams. The results showed that the recommended empirical equations were best suited to assess the shear strength of SFRC beams more accurately as compared to those obtained by the previously developed models.
Keywords
shear strength; steel fiber; reinforced concrete beams; statistical analysis; principal component regression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ACI Committee 318. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (318R-05). Farmington Hills, MI: American Concrete Institute, 443 pp.
2 Adhikary, B. B., & Mutsuyoshi, H. (2006). Prediction of shear strength of steel fiber RC beams using neural networks. Construction and Building Materials, 20, 801-811.   DOI   ScienceOn
3 Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behaviour of high strength fiber reinforced concrete beams. ACI Structural Journal, 89(2), 176-184.
4 Batson, G., Jenkins, E., & Spatney, R. (1972). Steel fibers as shear reinforcement in beams. ACI Journal, Proceedings, 69(10), 640-644.
5 Cho, S., & Kim, Y. (2003). Effects of steel fibers on short beams loaded in shear. ACI Structural Journal, 100(6), 765-774.
6 Choi, K. K., & Park, H. G. (2007). Unified shear strength model for reinforced concrete beams-Part II: Verification and simplified method. ACI Structural Journal, 104(2), 153-168.
7 Choi, K. K., Park, H. G., & Wight, J. M. (2007). Shear strength of steel fiber-reinforced concrete beams without web reinforcement. ACI Structural Journals, 104, 12-21.
8 Cucchiara, C., Mendola, L. L., & Papia, M. (2004). Effectiveness of stirrups and steel fibers as shear reinforcement. Cement & Concrete Composites, 26, 777-786.   DOI   ScienceOn
9 Dinh, H. H. (2007). Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. Doctoral Dissertation, University of Michigan, MI.
10 Dinh, H. H., Parra-Montesinos, G. J., & Wight, J. K. (2010). Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. ACI Structural Journal, 107(5), 597-606.
11 Dupont, D., & Vandewalle, L. (2003). Shear capacity of concrete beams containing longitudinal reinforcement and steel fibers. In N. Banthia (Ed.), Proceedings of innovations in fiber-reinforced concrete for value, Detroit, Michigan (SP-216, pp. 79-94). Farmington Hills, MI: American Concrete Institute.
12 Esfahani, M. R., & Rangan, B. V. (1998). Bond between normal strength and high-strength concrete (HSC) and reinforcing bars in splices in beams. ACI Structural Journal, 95(3), 272-280.
13 Greenough, T., & Nehdi, M. (2008). Shear behaviour of fiber reinforced self-consolidating concrete slender beams. ACI Materials Journal, 105(5), 468-477.
14 Imam, M., Vandewalle, L., & Mortelmans, F. (1994). Shear capacity of steel fiber high-strength concrete beams. High performance concrete (SP 149, pp. 227-241). Detroit, MI: American Concrete Institute.
15 Kang, T. H.-K., Kim, W., Kwak, Y.-K., & Hong, S.-G. (2011). Shear testing of steel fiber-reinforced lightweight concrete beams without web reinforcement. ACI Structural Journal, 108(5), 553-561.
16 Khaloo, A. R., & Kim, N. (1997). Influence of concrete and fiber characteristics on behavior of steel fiber reinforced concrete under direct shear. ACI Materials Journal, 94(6), 592-601.
17 Lim, D. H., & Oh, B. H. (1999). Experimental and theoretical investigation on the shear of steel fiber reinforced concrete beams. Engineering Structures, 21, 937-944.   DOI   ScienceOn
18 Khuntia, M., Stojadinovic, B., & Goel, S. (1999). Shear strength of normal and high-Strength fiber reinforced concrete beams without stirrups. ACI Structural Journal, 96(2), 282-290.
19 Kwak, Y., Eberhard, M. O., Kim, W., & Kim, J. (2002). Shear strength of steel fiber reinforced concrete beams without Stirrups. ACI Structural Journal, 99(4), 530-538.
20 Li, V. C., Ward, R., & Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Materials Journal, 89(5), 499-508.
21 Madan, S. K., Kumar, G. R., & Singh, S. P. (2007). Steel fibers as replacement of web reinforcement for RCC deep beams in shear. Asian Journal of Civil Engineering (Building and Housing), 8(5), 479-489.
22 Mansur, M. A., Ong, K. C. G., & Paramasivam, P. (1986). Shear strength of fibrous concrete beams without stirrups. ASCE Journal of Structural Engineering, 112(9), 2066-2079.   DOI   ScienceOn
23 Minelli, F., & Vecchio, F. J. (2006). Compression field modeling of fiber-reinforced concrete members under shear loading. ACI Structural Journal, 103(2), 244-252.
24 Murty, D. S. R., & Venkatacharyulu, T. (1987). Fiber reinforced concrete beams subjected to shear force. In: Proceedings of the international symposium on fiber reinforced concrete (pp. 133-149). Madras, India.
25 Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. ACI Structural Journal, 84(3), 216-227.
26 Narayanan, R., & Darwish, I. Y. S. (1988). Fiber concrete beams in shear. ACI Structural Journal, 85(2), 141-149.
27 Noghabai, K. (2000). Beams of fibrous concrete in shear and bending: Experiment and model. ASCE Journal of Structural Engineering, 126(2), 243-251.   DOI   ScienceOn
28 Sharma, A. K. (1986). Shear strength of steel fiber reinforced concrete beams. ACI Journal, 83(4), 624-628.
29 Ramakrishna, G., & Sundararajan, T. (2005). Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement & Concrete Composites, 27(5), 575-582.   DOI   ScienceOn
30 Rosenbusch, J., & Teutsch, M. (2003). Shear design with (${\sigma}-{\varepsilon}$) method. In Proceedings of international RILEM workshop on test and design methods for steel fiber reinforced concrete (pp. 105-117). Bochum, Germany: RILEM Publications SARL.
31 Shin, S. W., Oh, J. G., & Ghosh, S. K. (1994). Shear behavior of laboratory-sized high strength concrete beams reinforced with bars and steel fibers. Fiber Reinforced Concrete Developments and Innovations, ACI, 142, 181-200.
32 Swamy, R. N., & Bahia, H. M. (1985). The effectiveness of steel fibers as shear reinforcement. Concrete International, 7(3), 35-40.
33 Swamy, R. N., Jones, R., & Chiam, A. T. P. (1993). Influence of steel fibers on the shear resistance of lightweight concrete Ibeams. ACI Structural Journal, 90(1), 103-114.
34 Tan, K. H., Murugappan, K., & Paramasivam, P. (1993). Shear behaviour of steel fiber reinforced concrete beams. ACI Structural Journal, 90(1), 3-11.
35 Yakoub, H. E. (2011). Shear stress prediction: Steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 108(3), 304-336.