• Title/Summary/Keyword: shaft taper

Search Result 19, Processing Time 0.026 seconds

Influence of Taper Angle on Axial Behavior of Tapered Piles in Sand (모래지반에서 테이퍼 각도가 테이퍼말뚝의 연직거동에 미치는 영향)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.69-76
    • /
    • 2007
  • Axial behavior of tapered piles is affected by taper angle, stress state of soils, soil frictional angle and pile-soil interface friction angle. In this paper, a series of model pile load tests were performed using a calibration chamber in order to investigate the effect of taper angle on the axial response of cast-in-place tapered piles in sand. According to results of the tests, as taper angle of piles increased, the shaft load capacity of piles increased but its base load capacity decreased. The unit base load capacity of piles increased with increasing taper angle for medium sand but decreased for dense sand. The ratio of shaft to total load capacity increased with increasing taper angle and with decreasing relative density of soils. The test results also showed that total load capacity per unit pile volume increased with increasing taper angle for medium sand, but it decreased for dense sand. Therefore, it can be stated that tapered piles are economically more beneficial for medium sand than for dense sand.

Comparison of the centering ratio and canal curvature reduction according to the apical preparation size using various NiTi rotary instruments (근단부 성형 크기에 따른 다양한 전동 니켈티타늄 파일의 중심 변위율 및 만곡도 감소 비교)

  • Kwak, Sang-Won;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • v.47 no.7
    • /
    • pp.435-443
    • /
    • 2009
  • The purpose of this study was to compare the centering ratio and reduction of canal curvature according to the preparation sizes of #30, #40 and #50 using three rotary NiTi instruments which have different shaft tapers. Seventy-two simulated root canals in clear resin blocks (Endo Training Bloc; Dentsply Maillefer, Ballaigues, Switzerland) were divided as following 3 groups according to the file system; the 24 canal blocks prepared with each of ProTaper Universal system (Group P), LightSpeed eXtra system (Group L), and K3 (Group K). The pre- and post-instrumented root canals were scanned and superimposed to evaluate and calculate the centering ratio and reduction of canal curvature. Mean scores of each group were statistically analyzed using one-way ANOV A and Duncan's multiple range test for post-hoc comparison. The results were as followings: 1. Group L showed better centering ratio, followed by K and P. And all experimental groups generally showed increasing tendency of centering ratio as the apical size was increasing from #30 to #50, except at 1 mm level of group P where showed reducing tendency of centering ratio. The smaller the ratio, the better the instrument remained centered in the canal. 2. Group P showed more decrease of canal curvature at all apical shaping size (p < 0.05). Under the conditions of this study, the shaft design could affect the quality of canal shaping and the smooth taperless flexible (LightSpeed) shaft design was capable of preparing canals with good morphological characteristics in curved canals.

  • PDF

Performance Analysis of Oil-lubricated Thrust Collars in Integrally Geared Compressors (증속 기어 압축기용 스러스트 칼라의 윤활 성능 해석)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.169-174
    • /
    • 2018
  • A multi-stage compressor (MSC) is comprised of several impellers installed in the pinion gear shaft driven by a main bull gear. In the pinion shaft, a thrust collar (TC) is installed to support the thrust load. The TC makes the lubrication system simpler in the MSC; therefore, it is widely used in similar kinds of machinery. Typically, TCs are installed on both sides of the bull gear and pressure is developed in the lubricated area by creating a taper angle on the TC and bull gear surface. In the current study, we developed a numerical analysis model to evaluate the performance of the TC considering its design parameters. We sloved the Reynolds equation using the finite element method and applied the half Sommerfeld condition to consider cavitation. Based on the pressure calculated in the lubricated area, we calculated the power loss and minimum film thickness. In addition, we calculated stiffness and damping using perturbation method. We performed parametric studies using the developed model. The results of the analysis show that the maximum pressure presents in the center area of the TC and it increases with the taper angle. The area over which pressure is developed decreases with the taper angle. The results also show that there is an optimum taper angle providing minimum power loss and maximum film thickness. Additionally, the stiffness and damping decrease with the taper angle. As the applied load increases, the power loss increases and the minimum film thickness decreases. However, the stiffness and damping increase with the applied load.

Study on the Diagnosis System of Taper Roller Bearing used on the Lower Bearing of V.A.W.T. (수직축풍력발전기 하부베어링용 테이퍼롤러베어링의 결함진단시스템 개발)

  • 이성근;박영일;이희원;김영석
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.42-51
    • /
    • 1996
  • Taper roller bearing is used on rotating shaft where radial and thrust loads are attended. To avoid the sudden failure and maintain the good condition of rotating machinery it is necessary to monitor the condition of bearing and diagnose the defect of bearing. In this study the diagnosis program of taper roller bearing which is used on the lower bearing of V.A.W.T. (Vertical Axis Wind Turbine) is developed. By plenty of test the database is constructed and by Gaussian distribution obtained from database the defect probability of bearing is calculated.

  • PDF

Developing a Computer Program for the Design of Marine Diesel Engine Shafting (디이젤기관 추진축계 설계를 위한 전산프로그램 개발에 관한 연구)

  • 김영만;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.37-48
    • /
    • 1984
  • For the designing propulsion shafting of ship, shaft diameters are usually calculated according to the Society's rules and other scantlings such as a shaft length, coupling and taper parts, etc., are decided according to calculated diameters. And then, the torsional vibration, the lateral vibration and shaft alignment should be reviewed to check whether the resonance points of torsional or lateral vibration appear within the normal operating speed range and the shaft alignment is reasonable. If the results of calculations are unsatisfactory, this process should be repeated until the final condition is determined and the process of this work takes much time to carry out. To simplify the above tedious processes, authors have developed a computer program to fulfill the above design processes at once. This program takes aim at reducing the manual calculating work associated with the propulsion shafting of ship. To confirm the availability of developed computer program, several propulsion shaftings which are driven by diesel engines, have been analysed. The results calculated by authors developed computer program show comparatively good agreements with those of the actual propulsion shafting.

  • PDF

WC Micro-shaft Fabrication Using Electrochemical Etching (전해 가공을 이용한 WC 미세축 제작)

  • 최세환;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.172-178
    • /
    • 2004
  • Tungsten carbide microshaft can be used as various micro-tools for MEMS because it has high hardness and high rigidity. In this study, experiments are performed to produce tungsten carbide micro-shaft using electrochemical etching. H$_2$SO$_4$ solution is used as electrolyte because it can dissolve tungsten and cobalt simultaneously. Optimal electrolyte concentration and machining voltage satisfying uniform shape, good surface quality, and high MRR of workpiece are experimentally found. By controlling the various machining parameters, a straight micro-shaft with 5 ${\mu}{\textrm}{m}$ diameter, 3 mm length, and 0.2$^{\circ}$taper angle was obtained.

Tapered Joint Design for Power Transmission of MW-grade Wind Turbine (MW급 풍력발전기 동력전달용 테이퍼 연결장치 설계에 관한 연구)

  • Kang, JongHun;Bae, JunWoo;On, Hanyong;Kwon, Yongchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1183-1189
    • /
    • 2015
  • This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

Localized Electro-chemical Micro Drilling Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세구멍 가공)

  • 안세현;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.

Analysis of Load Distribution and Sharing on the Planetary Reducer for Wind Turbines (풍력발전기용 유성 감속기의 하중 분포 분석)

  • Park, Young-Jun;Lee, Geun-Ho;Kim, Jeong-Kil;Song, Jin-Seop;Park, Sung-Ha
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.830-836
    • /
    • 2011
  • Most of pitch/yaw reducers consist of several planetary geartrains. Planetary geartrains make gearboxes to be small and light, low noise and good efficiency. Most important thing in the planetary geartrain is load distribution on the gear tooth flank. In this study, the effect of output shaft bearings on the load distribution of gear tooth flank has been investigated. The commercial software was employed to compare the load distribution of two models depending on the bearing type. The spherical roller bearing(SRB) and the cylindrical roller bearing(CRB) were used as output shaft bearings in the $1^{st}$ model, and two taper roller bearings(TRB) were used in the $2^{nd}$ model. As a result, it was found that the $2^{nd}$ model. showed better performances on the load distribution of gear tooth flank, this results stated that the output shaft bearing system could be important consideration when designing reducers for wind turbine systems.

Vibration and Stability of Composite Thin-Walled Spinning Shaft (복합재료 회전축의 진동 특성 및 안정성 해석)

  • Yoon, Hyung-Won;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1083-1088
    • /
    • 2004
  • This paper deals with the vibration and stability of a circular cylindrical shaft, modeled as a tapered thin-walled composite beam and spinning with constant angular speed about its longitudinal axis, and subjected to an axial compressive force. Hamilton's principle and the assumed mode method are employed to derive the governing equations of motion. The resulting eigenvalue problem is analyzed, and the stability boundaries are presented for selected taper ratios and axial compressive force combinations. Taking into account the directionality property of fiber reinforced composite materials, it is shown that for a shaft featuring flapwise-chordwise-bending coupling, a dramatic enhancement of both the vibration and stability behavior can be reached. It is found that by the structural tailoring and tapering, bending natural frequencies, stiffness and stability region can be significantly increased over those of uniform shafts made of the same material. In addition, the particular case of a classical beam with internal damping effect is also included.

  • PDF