DOI QR코드

DOI QR Code

Tapered Joint Design for Power Transmission of MW-grade Wind Turbine

MW급 풍력발전기 동력전달용 테이퍼 연결장치 설계에 관한 연구

  • 강종훈 (중원대학교 메카트로닉스학과) ;
  • 배준우 (중원대학교 메카트로닉스학과) ;
  • 온한용 (중원대학교 메카트로닉스학과) ;
  • 권용철 (경남테크노파크)
  • Received : 2015.05.19
  • Accepted : 2015.08.11
  • Published : 2015.11.01

Abstract

This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

본 연구는 풍력발전기용 동력 전달부품의 테이퍼 연결장치 설계에 관한 것이다. 요구되는 전달토크의 크기, 동력을 전달하는 축의 직경, 테이퍼 링의 접촉면적 그리고 압축 면압을 부과하기 위한 볼트의 체결력 등이 테이퍼 연결장치 설계의 주요 변수이다. 테이퍼 연결의 계산은 축대칭 평면 변형률 조건의 복합링 구조로 가정하여 응력과 변형량을 계산 하였다. 축에 작용하는 면압은 요구 전달동력을 이용하여 계산하였고, 보강링에 작용하는 면압은 축과 허브의 변형량 일치 조건을 이용하여 계산하는 방법을 제안하였다. 복합링의 수식으로 구한 반경방향의 변형량으로 테이퍼 각도를 고려한 축방향 습동거리를 계산하였다. 수식으로 구한 응력과 상대습동거리의 타당성을 검증하기 위하여 유한요소해석을 수행하였으며 축방향의 하중이 발생하는 테이퍼면에서 원주방향의 응력이 최대 10% 수준의 오차를 보이고 있으나 그 외 응력분포와 상대습동거리는 수식적인 방법과 해석적인 방법이 일치함을 확인하였다.

Keywords

References

  1. "Flexible Couplings -Keyless Fits," 1991, ANSI/AGMA 9003-A91.
  2. "Interference Fits - Calculation and rules", 2001, DIN 7190-2.
  3. Hamrock, B.J. and Jacobson, B.O., 1999, "Fundamentals of Machine Elements," 3rd Edition, McGraw-Hill.
  4. Calistrat, M. M., 1980, "Hydraulically Fitted Hubs, Theory and Practice," Proceedings of the Ninth Turbomachinery Symposium, Texas A&M University, pp. 1-10.
  5. Mancuso, J. R. and Jones, R., 2001, "Coupling Interface Connection," Proceedings of the 30th Turbomachinery Symposium, Texas A&M University, pp. 9-22.
  6. Bozkay, D. and Mueftue, S., 2003, "Mechanics of the Tapered Interference Fit in Dental Implants," Journal of Biomechanics, Vol. 36, pp. 1649-1658. https://doi.org/10.1016/S0021-9290(03)00177-5
  7. Xiong, L., Shang, P. and Xu, Y., 2013, "Exact Solution of Stress and Radial Displacement of Elastic Tapered Interference Fit," Applied Mechanics and Materials, Vol. 423-426, pp. 1438-1443. https://doi.org/10.4028/www.scientific.net/AMM.423-426.1438
  8. Zhao, X. and Shang, P., 2014, "Exact Solution of Stresses of Tapered Interference Fit," Applied Mechanics and Materials, Vol. 556-562, pp. 4284-4287 https://doi.org/10.4028/www.scientific.net/AMM.556-562.4284
  9. Majzoobi, G.H. and Ghomi, A., 2006, Optimization of Compound Pressure Cylinders," Journal of Achievements in Materials and Manufacturing Engineering, Vol. 15, Issue 1-2, pp. 135-14
  10. Miraje, A. A. and Patil, S. A., 2012, "Optimum Thickness of Three-Layer Shrink Fitted Compound Cylinder for Uniform Stress Distribution, International Journal of Advances in Engineering & Technology, Vol. 3, Issue 2, pp. 591-605
  11. Kelly, P., 2013, Solid Mechanics Lecture Notes Part II, The University of Auckland. pp. 66-76.
  12. Jung, S.M. and Han, D.C., 1983, "Standard of Machine Design," Chapeter 2 Screw, bolt, Dongmyeongsa, pp. 91-98. (in Korean)

Cited by

  1. Study on the design parameters of a low speed coupling of a wind turbine vol.18, pp.5, 2017, https://doi.org/10.1007/s12541-017-0086-4