WC Micro-shaft Fabrication Using Electrochemical Etching

전해 가공을 이용한 WC 미세축 제작

  • 최세환 (서울대학교 기계항공공학부 대학원) ;
  • 류시형 (전북대학교 기계항공시스템공학) ;
  • 최덕기 (강릉대학교 정밀기계공학) ;
  • 주종남 (서울대학교 기계항공공학부)
  • Published : 2004.06.01

Abstract

Tungsten carbide microshaft can be used as various micro-tools for MEMS because it has high hardness and high rigidity. In this study, experiments are performed to produce tungsten carbide micro-shaft using electrochemical etching. H$_2$SO$_4$ solution is used as electrolyte because it can dissolve tungsten and cobalt simultaneously. Optimal electrolyte concentration and machining voltage satisfying uniform shape, good surface quality, and high MRR of workpiece are experimentally found. By controlling the various machining parameters, a straight micro-shaft with 5 ${\mu}{\textrm}{m}$ diameter, 3 mm length, and 0.2$^{\circ}$taper angle was obtained.

Keywords

References

  1. Sato, T., Nontraditional Machining, Yokendo, Tokyo, 1994
  2. Joo, B. Y., Oh, S. I. and Jeon, B. H., 'Development of Micro Punching System,' Annals of the CIRP, Vol. 50, pp. 191-194, 2001 https://doi.org/10.1016/S0007-8506(07)62102-7
  3. Muller, E. W. and Tsong, T. T., Field Ion Microscopy : Principles and Applications, American Elsevier, New York, 1969
  4. Morikawa, H. and Goto, K., 'Reproducible Sharppointed Tip Preparation for Field Ion Microscopy by Controlled AC Polishing,' Review ofScientific Instruments, Vol. 59, No. 10, pp. 2195-2197, 1988 https://doi.org/10.1063/1.1139985
  5. Fotino, M., 'Tip Sharpening by Normal and Reverse Electrochemical Etching,' Review of Scientific Instrments, Vol. 64, No. 1, pp. 159-167, 1993 https://doi.org/10.1063/1.1144419
  6. In, C. H., Kang, M. J., Kim, G. M. and Ghu, C. N., 'Mass Production of Tungsten Needle Tips by Electrochemical Etching,' Proceedings of the KSPE 1999 Fall Annual Meeting, pp. 1345-1350, 1999
  7. Lim, Y. M., Lim, H. J. and Kim, S. H., 'Shape and Diameter Control of Microshafts in Electrochemical process,' Journal of the Korean Society off Precision Engineering, Vol. 18, No. 5, pp. 50-56, 2001
  8. Human, A. M., Roebuck, B. and Exner, H. E., 'Electrochemical Polarisation and Corrosion Behavior of Cobalt and Co(W,C) Alloys in 1 N Sulphuric Acid,' Materials Science and Engineering, Vol. A241, pp. 202-210, 1998 https://doi.org/10.1016/S0921-5093(97)00492-9
  9. Basu, S. and Sarin, V., 'Oxidation Behavior of WCCo,' Materials Science and Engineering, Vol. A 209, pp. 206-212, 1996 https://doi.org/10.1016/0921-5093(95)10145-4
  10. Andersson, K. M. and Bergstrom, L., 'Oxidation and Dissolution of Tungsten Carbide Powder in Water,' Int. Journal of Refractory Metals & Hard Materials, Vol. 18, pp. 121-129, 2000 https://doi.org/10.1016/S0263-4368(00)00010-X
  11. Kang, M. J., Production of Tungsten Carbide Microshaft Using Electro-chemical Machining, M.S Thesis, Seoul Nat'l Univ.,, 2001
  12. Lee, K. H., Electrochemical Machining Behavior of Tungsten-cabide Microshafts, Ph. D. Thesis, Seoul Nat'l Univ., 2001
  13. Kalpakjian, S., Manufacturing Processes for Engineering Materials, 3rd Ed., Addison Wesley Longman, Inc., 1997
  14. Bard, A. and Faulkner, L., Electrochemical Methods, 2nd Ed., John Wiley & Sons, Inc., 2001
  15. Paik, W. K. and Park, S. M., Electrochemistry: Science and Technology of Electrode Processes, Cheongmoongak, Seoul, 2001
  16. Choi, S. H., Ryu, S. H., Choi, D. K. and Chu, C. N., 'Optimal Machining Condition of WC-Microshaft Using Electrochemical Machining,' Proceedings of the KSPE 2002 Fall Annual Meeting, pp. 245-249, 2002