• Title/Summary/Keyword: serotonin compounds

Search Result 53, Processing Time 0.027 seconds

Synthesis of Two Nitro Analogs of Tranylcypromine: Relations of Aromatic Substitution of Nitro Groups to MAO-Inhibitory Activity

  • Kang, Gun-Il;Hong, Suk-Kil
    • Archives of Pharmacal Research
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • Two new nitro analogs of tranylcypromine, (E)-2-(p-nitrophenyl)cyclopropylamine ((E)-p-NTCP) and (E)-2-(m-nitrophenyl)cyclopropylamine ((E)-m-NTCP) were synthesized in order to examine the effect of aromatic nitro substitution on the MAO-inhibitory activity of 2-phenylcyclopropylamines. The compounds were obtained by treating t-butyl (E)-2-(p-nitrophenyl) cyclopropanecarbamate and t-butyl (E)-2-(m-nitrophenyl)cyclopropanecarbamate with p-toluenesulfonic acid in $CH_3$CN. Inhibitions of rat brain mitochondrial MAO-A and B by the compounds were examined using serotonin and benzylamine as the substrate at both in vitro and ex vivo levels. It was found from in vitro measurements that (E)-p-NTCP at $6.0{\times}10^{-5}M$ elicited merely 22.5% inhibition against MAO-B without any effect on MAO-A. In contrast, (E)-m-NTCP showed fair degrees of inhibitions of MAO-A and B with $IC_{50}$ values, $2.5{\times}10^{-7}M\;and\;1.4{\times}10^{-6}M$, respectively. It was also noted from (E)-m-NTCP that m-nitro substitution caused a shift of selectivity of the inhibition toward MAO-A. According to ex vivo measurements at 1.5, 3, 6, and 12 hr following the administration of a dose of 0.015 mmol/kg, i.p. to the rats, the inhibition percents of MAO-A by (E)-m-NTCP were 58.6, 63.7 63.6, and 46.6%, slightly lower than those observed by tranylcypromine. Whereas, (E)-m-NTCP at the same dose level did not show significant inhibitions against both MAO-A and MAO-B. Possible reasons for the difference in potencies between (E)-m-NTCP and (E)-p-NTCP were sought in relation to differing electron withdrawing effects of m- and p-substituents which will influence electron density of the side chain amino functions and the partitions.

  • PDF

Detection of N-Acetyltranylcypromine and Glucuronide of Phenyl-Hydroxylated N-Acetyltranlcypromine from Tranylcypromine-Dosed Rat Urine : Pharmacological Implications

  • Kang, Gun-Il;Choi, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.99-110
    • /
    • 1986
  • In order to use for metabolic studies of tranylcypromine (TCP), TCP-phenyl-$d_{5}$ was synthesized via the intermediates, 3-benzoylpropionic acid-$d_{5}$ and trans-2-phenylcyclopropanecarboxylic acid-$d_{5}$ -TCP(0.22 mmole/kg) and its deuterated analog were administered s. c. to the rats and GC/MS analyses of the urines led to the detection of N-acetyltranylcypromine (ATCP) and glucuronide conjugate of phenyl-hydroxylated ATCP. MAO activities in rat brain were measured using serotonin as the substrate. In vitro $IC_{50}$ of ATCP was determined to be $10^{-3}M$. The inhibitions by ATCP were not dependent on the preincubation time and were reversed by washing sedimented mitochondrial pellets after the preincubation. In vivo MAO inhibitions at various times of 0.5, 1.5, 3, 6, 12, and 23 hr after the administration of 0.4 mmole/kg (i. p. ) of ATCP were found to be 0.13, 73, 90, 89, and 74 %, respectively. Similarly, the inhibition percents by 0.015 mmole/kg (i. p. ) of TCP were 94, 99, 95, 91, 71 and 49%. The results strongly suggest that deacetylated product of ATCP may account for its in vivo MAO inhibition. The relationship between the metabolism via phenyl-hydroxylation and the in vivo potency of TCP was examined by QSAR study and it was found that groupings discriminating between the compounds with p-substituents and those without them only ensure high correlations, suggesting that ring-hydroxylation which occurs at the para position in most of the compounds is a determining factor to the potency of TCP.

  • PDF

Structure-Activity Relationship and Evaluation of Phenethylamine and Tryptamine Derivatives for Affinity towards 5-Hydroxytryptamine Type 2A Receptor

  • Shujie, Wang;Anlin, Zhu;Suresh, Paudel;Choon-Gon, Jang;Yong Sup, Lee;Kyeong-Man, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.176-182
    • /
    • 2023
  • Among 14 subtypes of serotonin receptors (5-HTRs), 5-HT2AR plays important roles in drug addiction and various psychiatric disorders. Agonists for 5-HT2AR have been classified into three structural groups: phenethylamines, tryptamines, and ergolines. In this study, the structure-activity relationship (SAR) of phenethylamine and tryptamine derivatives for binding 5-HT2AR was determined. In addition, functional and regulatory evaluation of selected compounds was conducted for extracellular signal-regulated kinases (ERKs) and receptor endocytosis. SAR studies showed that phenethylamines possessed higher affinity to 5-HT2AR than tryptamines. In phenethylamines, two phenyl groups were attached to the carbon and nitrogen (R3 ) atoms of ethylamine, the backbone of phenethylamines. Alkyl or halogen groups on the phenyl ring attached to the β carbon exerted positive effects on the binding affinity when they were at para positions. Oxygen-containing groups attached to R3 exerted mixed influences depending on the position of their attachment. In tryptamine derivatives, tryptamine group was attached to the β carbon of ethylamine, and ally groups were attached to the nitrogen atom. Oxygen-containing substituents on large ring and alkyl substituents on the small ring of tryptamine groups exerted positive and negative influence on the affinity for 5-HT2AR, respectively. Ally groups attached to the nitrogen atom of ethylamine exerted negative influences. Functional and regulatory activities of the tested compounds correlated with their affinity for 5-HT2AR, suggesting their agonistic nature. In conclusion, this study provides information for designing novel ligands for 5-HT2AR, which can be used to control psychiatric disorders and drug abuse.

Antihistaminic Action of Medicinal Plants

  • Lee, Yeun-Ju;Son, Jong-Keun;Lee, Shin-Woong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.202-202
    • /
    • 1996
  • The antihistaminic action of eighteen herbal medicines was investigated by the radioligand binding and functional assays. The hexane fractions of Trichosanthis radix, Mori cortex radicis and Evodiae fructus dose-dependently inhibited [$^3$H]mepyramine binding to H$_1$ receptor and histamine-induced contraction in guinea-pig brain homogenates and isolated guinea-pig ilea, respectively. Antihistaminic action of the hexane and ethylacetate fractions of Mori cortex radicis and the hexane fraction of Evodiae fructus was more potent than their antimuscarinic action evaluated from the inhibition of [$^3$H]QNB binding and carbachol response. The ethylacetate and chloroform fractions and six known flavonoids from Scutellariae radix also inhibited histamine-induced contraction, but antihistaminic potencies of these fractions and compounds were almost identical with their antimuscarinic potencies. The hexane fractions of Mori cortex radicis and Evodiae fructus, as shown in ketotifen, inhibited selectively the increase of cutaneous vascular permeability induced by histamine. However, wogonin (SC-1) from Scutellariae radix was a nonselective inhibitor for the effect of histamine and serotonin on the vascular permeability. These results demonstrate that the hexane and ethylacetate fractions of Mori cortex radicis and the hexane fraction of Evodiae fructus have the selective histamine H$_1$ receptor blocking activities.

  • PDF

Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics

  • Robie, Vasquez;Ju Kyoung, Oh;Ji Hoon, Song;Dae-Kyung, Kang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.671-695
    • /
    • 2022
  • The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.

The Rapid Detection of Antioxidants from Safflower Seeds (Carthamus tinctorius L.) Using Hyphenated-HPLC Techniques (Hyphenated-HPLC 기술을 활용한 홍화씨의 항산화 성분 분석)

  • Kim, Su-Jin;Kim, Sang-Min;Kang, Suk-Woo;Um, Byung-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.414-419
    • /
    • 2010
  • Hyphenated-HPLC techniques combine the separation power of HPLC with the structural and bioactivity information provided by NMR, ESI/MS, and an on-line antioxidant screening system. The major advantages over the traditional off-line techniques are rapidity and efficiency. In this study, we used hyphenated HPLC techniques including online HPLC-ABTS, LC-NMR, and LC-MS todirectly identify the major antioxidants of safflower (Carthamus tinctorius L.) seeds. The results demonstrated that the major antioxidant compounds from on-line HPLC-ABTS analysis were identified as 8'-hydroxyarcgenin-4'-O-$\beta$-D-glucoside, N-(p-coumaroyl) serotonin, and N-feruloylserotonin. Among them, N-feruloylserotonin accounted for almost 50% of the ABTS radical scavenging activity of the total extract. The results demonstrate that HPLC hyphenated techniques can be used to rapidly screen and structurally identify antioxidants from crude plant extracts.

Inhibitory effects of hydroxygenkwanin on platelets aggregation via regulation of phosphoproteins in collagen-induced human platelets (Collagen 유도의 사람 혈소판에서 인산화 단백질 조절을 통한 hydroxygenkwanin의 혈소판 응집억제 효과)

  • Chang-Eun Park;Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.122-127
    • /
    • 2023
  • Cardiovascular disease (CVD) is increasingly increasing as the main cause of death worldwide, and activation of platelet in vascular damage is one of the important causes of CVD. In recent, there is a growing interest in anti-thrombotic materials through platelet suppression, and efforts are being made to reduce side effects by using natural bioactive compounds. Known as one of the Flavonoids, hydroxygenkwanin (HGK) is a purified substance in Daphne Genkwa, which is known to have antibacterial, anti-inflammatory and anti-cancer effects, and has been reported to serve as an inhibitor of tissue factor that prevents thrombosis, but its anti-platelet effects and the action mechanisms is not known. In this study, we confirmed that the effects of HGK on the collagen-induced human platelets activation. HGK suppressed phosphorylation of PI3K/AKT and mitogen-activated protein kinases during platelet signaling, and reduced granule secretion in platelets such as ATP and serotonin. In addition, HGK inhibited the phosphorylation of cPLA2 and strongly undermined the production of TXA2, which is a powerful aggregation amplifier. As a result, the platelet aggregation derived by Collagen, a cohesive induced substance, was strongly suppressed by HGK to an IC50 of 86.36 µM. Therefore, HGK might be worth the antithrombotic substance that inhibits the activation and aggregation of human platelets that occur through blood vessel damage.

1-Methyl Substituent and Stereochemical Effects of 2-Phenylcyclopropylamines on the Inhibition of Rat Brain Mitochondrial Monoamine Oxidase A and B

  • Kang, Gun-Il;Hong, Suk-Kil;Choi, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 1987
  • (E)-2-Phenylcyclopropylamine ((E)-TCP), (Z)-2-Phenylacyclopropylamine ((Z)-TCP), (E)-1-methyl-2-phenylcyclopropylamine ((E)-MTCP), and (Z)-1-methyl-2-phenylcyclopropylamine ((Z)-MTCP) were synthesized and used to determine to what extent 1-methylsubstitution and stereochemistry of 2-phenycyclopropylamines affect inhibition of monoamine oxidase (MAO). Inhibition of rat brain mitochondrial MAO-A and B by the compounds were measured using serotonin and benzylamine as the substrate, respectively and $IC_{50}$ values obtianed with 95% confidence limits by the method of computation. For the inhibition of MAO-A, (E)-MTPC ($IC_{50}$ = 6.2 * $10^{-8}$M) was found to be 37 times more potent than (Z)-MTCP ($IC_{50}$ = 7.8 * $10^{-8}$M), was 7 times more potent than (Z)-MTCP($IC_{50}$= 4.7 * $10^{-7}$M) and (E)-TCP($IC_{50}$ =7.8 * $10^{-8}$M),0.6 times as potent as (Z)- TCP ($IC_{50}$ = 4.4 * $10^{-8}$M). The results suggested that while without 1-methyl group, potency of a (Z)-isomer was comparable to that of (E)-isomer, the methyl group in its (Z)-position was very unfavorable to the inhibition of MAO and that in its (E)-position, the methyl group contributed positively to the potency as found by the fact that (E)-MTCP was 1-5 times more potent than (E)-TCP. In view of the selective inhibition of MAO-A- or B over MAO-A and 1-methyl substitution as well as the stereochemical factors did not significantly influence the selectivity.

  • PDF

Anti-wrinkle Effect of Safflower (Carthamus tinctorius) Seed Extract (I) (홍화씨추출물의 피부 주름개선 효과(I))

  • 윤경섭;김미진;김자영;최상원;홍진태
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Anti-wrinkle Effect of safflower (Carthamus tinctorius L.) seed extract (CTSE) was evaluated by determination of the anti-oxidation, collagen synthesis and elastase inhibition in normal human fibroblast. CTSE showed anti-oxidation and collagen synthesis ability as much as or greater than other phytoestrogenic compounds such as genistein or resveratrol. Consistent with collagen synthesis promotion, CTSE also showed inhibitory effect on elastase activity. In the human skin irritation test, 0.2% CTSE did not show any adverse effect. These results demonstrate that CTSE can be useful as an anti-wrinkle cosmetic ingredient.

Physicochemical attributes, oxidative stability, and microbial profile of boneless sirloin and bone-in T-bone steaks from Hanwoo steer with reference to dry-aging

  • Ali, Mahabbat;Nam, Ki-Chang
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1169-1181
    • /
    • 2021
  • We investigated the comparative physicochemical attributes, oxidative stability, and microbial characteristics of 28 days dry-aged meat in between boneless sirloin (gluteus medius) and bone-in T-bone steaks (infraspinatus) muscles from Korean Native Hanwoo Steer (KNHS). Results reveal that regardless of the muscles, dry-aging increased protein content and water-holding capacity (WHC) (p < 0.05). Meat from infraspinatus-aged muscle led to darker meat with higher pH values than un-aged meat (p < 0.05). However, fat content, CIE a*, and CIE b* remained unchanged in both muscles at aging. At aged meat, thiobarbituric acid reactive substances (TBARS) values from bone-in infraspinatus muscle was 2.5-fold higher than boneless gluteus medius muscle (p < 0.05). Dry-aging led to an increase in the contents of total unsaturated fatty acids (UFAs), monounsaturated fatty acids (MUFAs), and UFA/saturated fatty acids (SFA) in both muscles (p < 0.05). Furthermore, gluteus medius aged muscle concentrated with olic acid (C18:1) compared to infraspinatus aged muscle. Irrespective of the muscles, dry-aging enhanced the total free amino acids (FAAs) as well as tasty, and bitter amino acid contents whereas decreased the tasty/bitter amino acids (p < 0.05). Aromatic amino acid, tryptophan that converted to serotonin was 2-fold higher in boneless gluteus medius muscle than bone-in infraspinatus muscle at pre and post aging processes (p < 0.05). Aged Infraspinatus muscle increased total bacteria (p < 0.05) while no salmonella spp. was detected in both muscles. Taken together, our study confirms that 28 days dry-aging profiling the quality characteristics of boneless sirloin (gluteus medius) and bone-in T-bone steaks (infraspinatus) distinctly while gluteus medius aged steak performs better owing to oxidative stability and functional compounds than infraspinatus aged steak.