Browse > Article
http://dx.doi.org/10.5187/jast.2022.e58

Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics  

Robie, Vasquez (Department of Animal Resources Science, Dankook University)
Ju Kyoung, Oh (Department of Animal Resources Science, Dankook University)
Ji Hoon, Song (Department of Animal Resources Science, Dankook University)
Dae-Kyung, Kang (Department of Animal Resources Science, Dankook University)
Publication Information
Journal of Animal Science and Technology / v.64, no.4, 2022 , pp. 671-695 More about this Journal
Abstract
The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.
Keywords
Gut microbiome; Pig; Microbiome-derived metabolite; Metabolome; Probiotics;
Citations & Related Records
Times Cited By KSCI : 50  (Citation Analysis)
연도 인용수 순위
1 LeBlanc JG, Laino JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, et al. B-group vitamin production by lactic acid bacteria - current knowledge and potential applications. J Appl Microbiol. 2011;111:1297-309. https://doi.org/10.1111/j.1365-2672.2011.05157.x   DOI
2 Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin b family in the regulation of host immunity. Front Nutr. 2019;6:48. https://doi.org/10.3389/fnut.2019.00048   DOI
3 Liao SF, Nyachoti M. Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr. 2017;3:331-43. https://doi.org/10.1016/j.aninu.2017.06.007   DOI
4 Roselli M, Pieper R, Rogel-Gaillard C, de Vries H, Bailey M, Smidt H, et al. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim Feed Sci Technol. 2017;233:104-19. https://doi.org/10.1016/j.anifeedsci.2017.07.011   DOI
5 Mun D, Kyoung H, Kong M, Ryu S, Jang KB, Baek J, et al. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. J Anim Sci Technol. 2021;63:1314-27. https://doi.org/10.5187/jast.2021.e109   DOI
6 Peng Y, Yu K, Mu C, Hang S, Che L, Zhu W. Progressive response of large intestinal bacterial community and fermentation to the stepwise decrease of dietary crude protein level in growing pigs. Appl Microbiol Biotechnol. 2017;101:5415-26. https://doi.org/10.1007/s00253-017-8285-6   DOI
7 Wang J, Tan B, Li J, Kong X, Tan M, Wu G. Regulatory role of L-proline in fetal pig growth and intestinal epithelial cell proliferation. Anim Nutr. 2020;6:438-46. https://doi.org/10.1016/j.aninu.2020.07.001   DOI
8 Liu B, Jiang X, Cai L, Zhao X, Dai Z, Wu G, et al. Putrescine mitigates intestinal atrophy through suppressing inflammatory response in weanling piglets. J Anim Sci Biotechnol. 2019;10:69. https://doi.org/10.1186/s40104-019-0379-9   DOI
9 Smith EA, Macfarlane GT. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb Ecol. 1997;33:180-8. https://doi.org/10.1007/s002489900020   DOI
10 Pluske JR, Turpin DL, Kim JC. Gastrointestinal tract (gut) health in the young pig. Anim Nutr. 2018;4:187-96. https://doi.org/10.1016/j.aninu.2017.12.004   DOI
11 Sun X, Jia Z. Microbiome modulates intestinal homeostasis against inflammatory diseases. Vet Immunol Immunopathol. 2018;205:97-105. https://doi.org/10.1016/j.vetimm.2018.10.014   DOI
12 Zimmermann JA, Fusari ML, Rossler E, Blajman JE, Romero-Scharpen A, Astesana DM, et al. Effects of probiotics in swines growth performance: a meta-analysis of randomised controlled trials. Anim Feed Sci Technol. 2016;219:280-93. https://doi.org/10.1016/j.anifeedsci.2016.06.021   DOI
13 Barba-Vidal E, Martin-Orue SM, Castillejos L. Practical aspects of the use of probiotics in pig production: a review. Livest Sci. 2019;223:84-96. https://doi.org/10.1016/j.livsci.2019.02.017   DOI
14 Kim HB, Isaacson RE. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol. 2015;177:242-51. https://doi.org/10.1016/j.vetmic.2015.03.014   DOI
15 Ding S, Yan W, Ma Y, Fang J. The impact of probiotics on gut health via alternation of immune status of monogastric animals. Anim Nutr. 2021;7:24-30. https://doi.org/10.1016/j.aninu.2020.11.004   DOI
16 Valeriano VDV, Balolong MP, Kang DK. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol. 2017;122:554-67. https://doi.org/10.1111/jam.13364   DOI
17 Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021;13:2099. https://doi.org/10.3390/nu13062099   DOI
18 Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilan CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185. https://doi.org/10.3389/fmicb.2016.00185   DOI
19 Caspani G, Swann J. Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr Opin Pharmacol. 2019;48:99-106. https://doi.org/10.1016/j.coph.2019.08.001   DOI
20 Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25. https://doi.org/10.3389/fendo.2020.00025   DOI
21 Makki K, Deehan EC, Walter J, Backhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23:705-15. https://doi.org/10.1016/j.chom.2018.05.012   DOI
22 Trefflich I, Dietrich S, Braune A, Abraham K, Weikert C. Short- and branched-chain fatty acids as fecal markers for microbiota activity in vegans and omnivores. Nutrients. 2021;13:1808. https://doi.org/10.3390/nu13061808   DOI
23 Macfarlane GT, Gibson GR, Beatty E, Cummings JH. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol Lett. 1992;101:81-8. https://doi.org/10.1111/j.1574-6968.1992.tb05764.x   DOI
24 Nakatani M, Inoue R, Tomonaga S, Fukuta K, Tsukahara T. Production, absorption, and blood flow dynamics of short-chain fatty acids produced by fermentation in piglet hindgut during the suckling-weaning period. Nutrients. 2018;10:1220. https://doi.org/10.3390/nu10091220   DOI
25 Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol. 1996;62:1589-92. https://doi.org/10.1128/aem.62.5.1589-1592.1996   DOI
26 Kong XF, Ji YJ, Li HW, Zhu Q, Blachier F, Geng MM, et al. Colonic luminal microbiota and bacterial metabolite composition in pregnant Huanjiang mini-pigs: effects of food composition at different times of pregnancy. Sci Rep. 2016;6:37224. https://doi.org/10.1038/srep37224   DOI
27 Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Tolllike receptor 4. Immunity. 2014;41:296-310. https://doi.org/10.1016/j.immuni.2014.06.014   DOI
28 Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716-24. https://doi.org/10.1016/j.chom.2018.05.003   DOI
29 Liang H, Dai Z, Kou J, Sun K, Chen J, Yang Y, et al. Dietary L-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: implication of tryptophanmetabolizing microbiota. Int J Mol Sci. 2019;20:20. https://doi.org/10.3390/ijms20010020   DOI
30 Li R, Hou G, Jiang X, Song Z, Fan Z, Hou DX, et al. Different dietary protein sources in low protein diets regulate colonic microbiota and barrier function in a piglet model. Food Funct. 2019;10:6417-28. https://doi.org/10.1039/c9fo01154d   DOI
31 Arroyo L, Carreras R, Valent D, Pena R, Mainau E, Velarde A, et al. Effect of handling on neurotransmitter profile in pig brain according to fear related behaviour. Physiol Behav. 2016;167:374-81. https://doi.org/10.1016/j.physbeh.2016.10.005   DOI
32 Moeser AJ, Pohl CS, Rajput M. Weaning stress and gastrointestinal barrier development: implications for lifelong gut health in pigs. Anim Nutr. 2017;3:313-21. https://doi.org/10.1016/j.aninu.2017.06.003   DOI
33 Riccio P, Rossano R. The human gut microbiota is neither an organ nor a commensal. FEBS Lett. 2020;594:3262-71. https://doi.org/10.1002/1873-3468.13946   DOI
34 Chen C, Zhou Y, Fu H, Xiong X, Fang S, Jiang H, et al. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun. 2021;12:1106. https://doi.org/10.1038/s41467-021-21295-0   DOI
35 Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18:2-4. https://doi.org/10.1111/j.1469-0691.2012.03916.x   DOI
36 Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 2019;7:5. https://doi.org/10.1186/s40168-019-0619-4   DOI
37 Brody H. The gut microbiome. Nature. 2020;577:S5. https://doi.org/10.1038/d41586-020-00194-2   DOI
38 Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31:69-75. https://doi.org/10.1097/MOG.0000000000000139   DOI
39 Chalvon-Demersay T, Luise D, Le Floc'h N, Tesseraud S, Lambert W, Bosi P, et al. Functional amino acids in pigs and chickens: implication for gut health. Front Vet Sci. 2021;8:663727. https://doi.org/10.3389/fvets.2021.663727   DOI
40 Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8:56. https://doi.org/10.3390/nu8010056   DOI
41 Mazzoli R, Pessione E. The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol. 2016;7:1934. https://doi.org/10.3389/fmicb.2016.01934   DOI
42 Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29-41. https://doi.org/10.1111/1462-2920.13589   DOI
43 Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, et al. Roseburia spp.: a marker of health? Future Microbiol. 2017;12:157-70. https://doi.org/10.2217/fmb2016-0130   DOI
44 Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, et al. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021;13:1875796. https://doi.org/10.1080/19490976.2021.1875796   DOI
45 Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity. 2013;5:627-40. https://doi.org/10.3390/d5030627   DOI
46 Zhu Z, Zhu L, Jiang L. Dynamic regulation of gut Clostridium-derived short-chain fatty acids. Trends Biotechnol. 2022;40:266-70. https://doi.org/10.1016/j.tibtech.2021.10.005   DOI
47 Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277   DOI
48 den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, et al. Shortchain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64:2398-408. https://doi.org/10.2337/db14-1213   DOI
49 Boudry G, Jamin A, Chatelais L, Gras-Le Guen C, Michel C, Le Huerou-Luron I. Dietary protein excess during neonatal life alters colonic microbiota and mucosal response to inflammatory mediators later in life in female pigs. J Nutr. 2013;143:1225-32. https://doi.org/10.3945/jn.113.175828   DOI
50 Andersen AD, Nguyen DN, Langhorn L, Renes IB, van Elburg RM, Hartog A, et al. Synbiotics combined with glutamine stimulate brain development and the immune system in preterm pigs. J Nutr. 2019;149:36-45. https://doi.org/10.1093/jn/nxy243   DOI
51 Cao G, Tao F, Hu Y, Li Z, Zhang Y, Deng B, et al. Positive effects of a Clostridium butyricum-based compound probiotic on growth performance, immune responses, intestinal morphology, hypothalamic neurotransmitters, and colonic microbiota in weaned piglets. Food Funct. 2019;10:2926-34. https://doi.org/10.1039/c8fo02370k   DOI
52 Wang S, Yao B, Gao H, Zang J, Tao S, Zhang S, et al. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Vet Res. 2019;15:239. https://doi.org/10.1186/s12917-019-1991-9   DOI
53 Ding H, Zhao X, Ma C, Gao Q, Yin Y, Kong X, et al. Dietary supplementation with Bacillus subtilis DSM 32315 alters the intestinal microbiota and metabolites in weaned piglets. J Appl Microbiol. 2021;130:217-32. https://doi.org/10.1111/jam.14767   DOI
54 Wang X, Tian Z, Azad MAK, Zhang W, Blachier F, Wang Z, et al. Dietary supplementation with Bacillus mixture modifies the intestinal ecosystem of weaned piglets in an overall beneficial way. J Appl Microbiol. 2021;130:233-46. https://doi.org/10.1111/jam.14782   DOI
55 Wang XL, Liu ZY, Li YH, Yang LY, Yin J, He JH, et al. Effects of dietary supplementation of Lactobacillus delbrueckii on gut microbiome and intestinal morphology in weaned piglets. Front Vet Sci. 2021;8:692389. https://doi.org/10.3389/fvets.2021.692389   DOI
56 Lu X, Zhang M, Zhao L, Ge K, Wang Z, Jun L, et al. Growth performance and post-weaning diarrhea in piglets fed a diet supplemented with probiotic complexes. J Microbiol Biotechnol. 2018;28:1791-9. https://doi.org/10.4014/jmb.1807.07026   DOI
57 Dotsenko G, Meyer AS, Canibe N, Thygesen A, Nielsen MK, Lange L. Enzymatic production of wheat and ryegrass derived xylooligosaccharides and evaluation of their in vitro effect on pig gut microbiota. Biomass Convers Biorefin. 2018;8:497-507. https://doi.org/10.1007/s13399-017-0298-y   DOI
58 Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta Proteins Proteom. 2008;1784:1873-98. https://doi.org/10.1016/j.bbapap.2008.08.012   DOI
59 Bai Y, Zhou X, Zhao J, Wang Z, Ye H, Pi Y, et al. Sources of dietary fiber affect the SCFA production and absorption in the hindgut of growing pigs. Front Nutr. 2022;8:719935. https://doi.org/10.3389/fnut.2021.719935   DOI
60 Namkung H, Li M, Gong J, Yu H, Cottrill M, de Lange CFM. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can J Anim Sci. 2004;84:697-704. https://doi.org/10.4141/A04-005   DOI
61 Oh JK, Vasquez R, Kim SH, Hwang IC, Song JH, Park JH, et al. Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota. J Anim Sci Technol. 2021;63:1142-58. https://doi.org/10.5187/jast.2021.e94   DOI
62 Liu H, Wang J, He T, Becker S, Zhang G, Li D, et al. Butyrate: a double-edged sword for health? Adv Nutr. 2018;9:21-9. https://doi.org/10.1093/advances/nmx009   DOI
63 Yu K, Zhang Y, Chen H, Zhu W. Hepatic metabolomic and transcriptomic responses induced by cecal infusion of sodium propionate in a fistula pig model. J Agric Food Chem. 2019;67:13073-81. https://doi.org/10.1021/acs.jafc.9b05070   DOI
64 Zeng H, Chi H. Metabolic control of regulatory T cell development and function. Trends Immunol. 2015;36:3-12. https://doi.org/10.1016/j.it.2014.08.003   DOI
65 Li ZS, Schmauss C, Cuenca A, Ratcliffe E, Gershon MD. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J Neurosci. 2006;26:2798-807. https://doi.org/10.1523/JNEUROSCI.4720-05.2006   DOI
66 Lyte JM, Lyte M. Review: microbial endocrinology: intersection of microbiology and neurobiology matters to swine health from infection to behavior. Animal. 2019;13:2689-98. https://doi.org/10.1017/S1751731119000284   DOI
67 Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264-76. https://doi.org/10.1016/j.cell.2015.02.047   DOI
68 Kwon YH, Wang H, Denou E, Ghia JE, Rossi L, Fontes ME, et al. Modulation of gut microbiota composition by serotonin signaling influences intestinal immune response and susceptibility to colitis. Cell Mol Gastroenterol Hepatol. 2019;7:709-28. https://doi.org/10.1016/j.jcmgh.2019.01.004   DOI
69 Gao K, Pi Y, Mu CL, Peng Y, Huang Z, Zhu WY. Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets. J Neurochem. 2018;146:219-34. https://doi.org/10.1111/jnc.14333   DOI
70 Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H, et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLOS ONE. 2013;8:e80604. https://doi.org/10.1371/journal.pone.0080604   DOI
71 Li X, Zhang B, Hu Y, Zhao Y. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front Pharmacol. 2021;12:769501. https://doi.org/10.3389/fphar.2021.769501   DOI
72 O'Grady J, O'Connor EM, Shanahan F. Review article: dietary fibre in the era of microbiome science. Aliment Pharmacol Ther. 2019;49:506-15. https://doi.org/10.1111/apt.15129   DOI
73 Zhang L, Wu W, Lee YK, Xie J, Zhang H. Spatial heterogeneity and co-occurrence of mucosal and luminal microbiome across swine intestinal tract. Front Microbiol. 2018;9:48. https://doi.org/10.3389/fmicb.2018.00048   DOI
74 Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30:332-8. https://doi.org/10.1097/MOG.0000000000000057   DOI
75 Scott KP, Duncan SH, Flint HJ. Dietary fibre and the gut microbiota. Nutr Bull. 2008;33:201-11. https://doi.org/10.1111/j.1467-3010.2008.00706.x   DOI
76 Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7:2839-49. https://doi.org/10.3390/nu7042839   DOI
77 Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10:e02566-18. https://doi.org/10.1128/mBio.02566-18   DOI
78 Gierse LC, Meene A, Schultz D, Schwaiger T, Karte C, Schroder C, et al. A multi-omics protocol for swine feces to elucidate longitudinal dynamics in microbiome structure and function. Microorganisms. 2020;8:1887. https://doi.org/10.3390/microorganisms8121887   DOI
79 Ewtushik AL, Bertolo RFP, Ball RO. Intestinal development of early-weaned piglets receiving diets supplemented with selected amino acids or polyamines. Can J Anim Sci. 2000;80:653-62. https://doi.org/10.4141/A99-134   DOI
80 Pieper R, Villodre Tudela C, Taciak M, Bindelle J, Perez JF, Zentek J. Health relevance of intestinal protein fermentation in young pigs. Anim Health Res Rev. 2016;17:137-47. https://doi.org/10.1017/S1466252316000141   DOI
81 Rios-Covian D, Gonzalez S, Nogacka AM, Arboleya S, Salazar N, Gueimonde M, et al. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors. Front Microbiol. 2020;11:973. https://doi.org/10.3389/fmicb.2020.00973   DOI
82 Rist VTS, Weiss E, Eklund M, Mosenthin R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal. 2013;7:1067-78. https://doi.org/10.1017/S1751731113000062   DOI
83 Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol. 2006;72:3593-9. https://doi.org/10.1128/AEM.72.5.3593-3599.2006   DOI
84 Brestensky M, Nitrayova S, Bomba A, Patras P, Strojny L, Szabadosova V, et al. The content of short chain fatty acids in the jejunal digesta, caecal digesta and faeces of growing pigs. Livest Sci. 2017;205:106-10. https://doi.org/10.1016/j.livsci.2017.09.015   DOI
85 Fiorucci S, Mencarelli A, Palladino G, Cipriani S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci. 2009;30:570-80. https://doi.org/10.1016/j.tips.2009.08.001   DOI
86 Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharma Sin B. 2015;5:135-44. https://doi.org/10.1016/j.apsb.2015.01.004   DOI
87 Ohashi Y, Ushida K. Health-beneficial effects of probiotics: its mode of action. Anim Sci J. 2009;80:361-71. https://doi.org/10.1111/j.1740-0929.2009.00645.x   DOI
88 Ma C, Azad MAK, Tang W, Zhu Q, Wang W, Gao Q, et al. Maternal probiotics supplementation improves immune and antioxidant function in suckling piglets via modifying gut microbiota. J Appl Microbiol. 2022. https://doi.org/10.1111/jam.15572   DOI
89 He T, Zhu YH, Yu J, Xia B, Liu X, Yang GY, et al. Lactobacillus johnsonii L531 reduces pathogen load and helps maintain short-chain fatty acid levels in the intestines of pigs challenged with Salmonella enterica infantis. Vet Microbiol. 2019;230:187-94. https://doi.org/10.1016/j.vetmic.2019.02.003   DOI
90 Sakata T, Kojima T, Fujieda M, Takahashi M, Michibata T. Influences of probiotic bacteria on organic acid production by pig caecal bacteria in vitro. Proc Nutr Soc. 2003;62:73-80. https://doi.org/10.1079/pns2002211   DOI
91 El Aidy S, Merrifield CA, Derrien M, van Baarlen P, Hooiveld G, Levenez F, et al. The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut. 2013;62:1306-14. https://doi.org/10.1136/gutjnl-2011-301955   DOI
92 Hou G, Peng W, Wei L, Li R, Yuan Y, Huang X, et al. Lactobacillus delbrueckii interfere with bile acid enterohepatic circulation to regulate cholesterol metabolism of growing-finishing pigs via its bile salt hydrolase activity. Front Nutr. 2020;7:617676. https://doi.org/10.3389/fnut.2020.617676   DOI
93 Nealon NJ, Yuan L, Yang X, Ryan EP. Rice bran and probiotics alter the porcine large intestine and serum metabolomes for protection against human rotavirus diarrhea. Front Microbiol. 2017;8:653. https://doi.org/10.3389/fmicb.2017.00653   DOI
94 Heo JM, Kim JC, Hansen CF, Mullan BP, Hampson DJ, Pluske JR. Feeding a diet with a decreased protein content reduces both nitrogen content in the gastrointestinal tract and post-weaning diarrhoea, but does not affect apparent nitrogen digestibility in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli. Anim Feed Sci Technol. 2010;160:148-59. https://doi.org/10.1016/j.anifeedsci.2010.07.005   DOI
95 Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775-87. https://doi.org/10.1016/j.cell.2008.05.009   DOI
96 Kondelkova K, Vokurkova D, Krejsek J, Borska L, Fiala Z, Ctirad A. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove) Universitas Carolina, Facultas Medica Hradec Kralove 2010;53:73-7. https://doi.org/10.14712/18059694.2016.63   DOI
97 Zhang H, van der Wielen N, van der Hee B, Wang J, Hendriks W, Gilbert M. Impact of fermentable protein, by feeding high protein diets, on microbial composition, microbial catabolic activity, gut health and beyond in pigs. Microorganisms. 2020;8:1735. https://doi.org/10.3390/microorganisms8111735   DOI
98 He X, Sun W, Ge T, Mu C, Zhu W. An increase in corn resistant starch decreases protein fermentation and modulates gut microbiota during in vitro cultivation of pig large intestinal inocula. Anim Nutr. 2017;3:219-24. https://doi.org/10.1016/j.aninu.2017.06.004   DOI
99 Cho HM, Gonzalez-Ortiz G, Melo-Duran D, Heo JM, Cordero G, Bedford MR, et al. Stimbiotic supplementation improved performance and reduced inflammatory response via stimulating fiber fermenting microbiome in weaner pigs housed in a poor sanitary environment and fed an antibiotic-free low zinc oxide diet. PLOS ONE. 2020;15:e0240264. https://doi.org/10.1371/journal.pone.0240264   DOI
100 Andriamihaja M, Lan A, Beaumont M, Audebert M, Wong X, Yamada K, et al. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic Biol Med. 2015;85:219-27. https://doi.org/10.1016/j.freeradbiomed.2015.04.004   DOI
101 Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2011;56:184-96. https://doi.org/10.1002/mnfr.201100542   DOI
102 Liang H, Dai Z, Liu N, Ji Y, Chen J, Zhang Y, et al. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Front Microbiol. 2018;9:1736. https://doi.org/10.3389/fmicb.2018.01736   DOI
103 Fu Q, Tan Z, Shi L, Xun W. Resveratrol attenuates diquat-induced oxidative stress by regulating gut microbiota and metabolome characteristics in piglets. Front Microbiol. 2021;12:695155. https://doi.org/10.3389/fmicb.2021.695155   DOI
104 Wesoly R, Weiler U. Nutritional influences on skatole formation and skatole metabolism in the pig. Animals. 2012;2:221-42. https://doi.org/10.3390/ani2020221   DOI
105 Jensen BB. Prevention of boar taint in pig production. Factors affecting the level of skatole. Acta Vet Scand. 2006;48:S6. https://doi.org/10.1186/1751-0147-48-S1-S6   DOI
106 Pieper R, Boudry C, Bindelle J, Vahjen W, Zentek J. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Arch Anim Nutr. 2014;68:263-80. https://doi.org/10.1080/1745039X.2014.932962   DOI
107 De Bruyne E, Ducatelle R, Foss D, Sanchez M, Joosten M, Zhang G, et al. Oral glutathione supplementation drastically reduces Helicobacter-induced gastric pathologies. Sci Rep. 2016;6:20169. https://doi.org/10.1038/srep20169   DOI
108 Zhao J, Zhang X, Liu H, Brown MA, Qiao S. Dietary protein and gut microbiota composition and function. Curr Protein Pept Sci. 2019;20:145-54. https://doi.org/10.2174/1389203719666180514145437   DOI
109 Ma Y, Han X, Fang J, Jiang H. Role of dietary amino acids and microbial metabolites in the regulation of pig intestinal health. Anim Nutr. 2022;9:1-6. https://doi.org/10.1016/j.aninu.2021.10.004   DOI
110 Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res. 2013;68:95-107. https://doi.org/10.1016/j.phrs.2012.11.005   DOI
111 Dodd D, Spitzer MH, van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648-52. https://doi.org/10.1038/nature24661   DOI
112 Wlodarska M, Luo C, Kolde R, d'Hennezel E, Annand JW, Heim CE, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22:25-37.E6. https://doi.org/10.1016/j.chom.2017.06.007   DOI
113 Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569-73. https://doi.org/10.1126/science.1241165   DOI
114 Xu M, Jiang Z, Wang C, Li N, Bo L, Zha Y, et al. Acetate attenuates inflammasome activation through GPR43-mediated Ca2+-dependent NLRP3 ubiquitination. Exp Mol Med. 2019;51:1-13. https://doi.org/10.1038/s12276-019-0276-5   DOI
115 Reyer H, Oster M, McCormack UM, Murani E, Gardiner GE, Ponsuksili S, et al. Host-microbiota interactions in ileum and caecum of pigs divergent in feed efficiency contribute to nutrient utilization. Microorganisms. 2020;8:563. https://doi.org/10.3390/microorganisms8040563   DOI
116 Sabater-Molina M, Larque E, Torrella F, Plaza J, Ramis G, Zamora S. Effects of fructooligosaccharides on cecum polyamine concentration and gut maturation in earlyweaned piglets. J Clin Biochem Nutr. 2011;48:230-6. https://doi.org/10.3164/jcbn.10-100   DOI
117 Matsumoto M, Benno Y. The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiol Immunol. 2013;51:25-35. https://doi.org/10.1111/j.1348-0421.2007.tb03887.x   DOI
118 Tofalo R, Cocchi S, Suzzi G. Polyamines and gut microbiota. Front Nutr. 2019;6:16. https://doi.org/10.3389/fnut.2019.00016   DOI
119 Ramos-Molina B, Queipo-Ortuno MI, Lambertos A, Tinahones FJ, Penafiel R. Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front Nutr. 2019;6:24. https://doi.org/10.3389/fnut.2019.00024   DOI
120 Sabater-Molina M, Larque E, Torrella F, Plaza J, Lozano T, Munoz A, et al. Effects of dietary polyamines at physiologic doses in early-weaned piglets. Nutrition. 2009;25:940-6. https://doi.org/10.1016/j.nut.2009.01.017   DOI
121 Tan C, Huang Z, Xiong W, Ye H, Deng J, Yin Y. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. J Anim Sci Biotechnol. 2022;13:28. https://doi.org/10.1186/s40104-022-00676-5   DOI
122 Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE. Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod. 2005;72:842-50. https://doi.org/10.1095/biolreprod.104.036293   DOI
123 Fang T, Liu G, Cao W, Wu X, Jia G, Zhao H, et al. Spermine: new insights into the intestinal development and serum antioxidant status of suckling piglets. RSC Adv. 2016;6:31323-35. https://doi.org/10.1039/c6ra05361k   DOI
124 Rodriguez-Sorrento A, Castillejos L, Lopez-Colom P, Cifuentes-Orjuela G, RodriguezPalmero M, Moreno-Munoz JA, et al. Effects of the administration of Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001 and their synbiotic combination with galacto-oligosaccharides against enterotoxigenic Escherichia coli F4 in an early weaned piglet model. Front Microbiol. 2021;12:642549. https://doi.org/10.3389/fmicb.2021.642549   DOI
125 Yang M, Gu Y, Li L, Liu T, Song X, Sun Y, et al. Bile acid-gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients. 2021;13:3143. https://doi.org/10.3390/nu13093143   DOI
126 Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 2014;7:12-8. https://doi.org/10.1016/j.celrep.2014.02.032   DOI
127 Barba-Vidal E, Castillejos L, Lopez-Colom P, Urgell MR, Moreno Munoz JA, Martin-Orue SM. Evaluation of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Front Microbiol. 2017;8:533. https://doi.org/10.3389/fmicb.2017.00533   DOI
128 Sheng QK, Zhou KF, Hu HM, Zhao HB, Zhang Y, Ying W. Effect of Bacillus subtilis natto on meat quality and skatole content in TOPIGS pigs. Asian-Australas J Anim Sci. 2016;29:716-21. https://doi.org/10.5713/ajas.15.0478   DOI
129 Peng XP, Nie C, Guan WY, Qiao LD, Lu L, Cao SJ. Regulation of probiotics on metabolism of dietary protein in intestine. Curr Protein Pept Sci. 2020;21:766-71. https://doi.org/10.2174/1389203720666191111112941   DOI
130 Yong SJ, Tong T, Chew J, Lim WL. Antidepressive mechanisms of probiotics and their therapeutic potential. Front Neurosci. 2020;13:1361. https://doi.org/10.3389/fnins.2019.01361   DOI
131 Ran-Ressler RR, Glahn RP, Bae S, Brenna JT. Branched-chain fatty acids in the neonatal gut and estimated dietary intake in infancy and adulthood. In: The Importance of Immunonutrition: 77th Nestle Nutrition Institute Workshop; 2013; Panama. p. 133-43.
132 McCormack UM, Curiao T, Buzoianu SG, Prieto ML, Ryan T, Varley P, et al. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl Environ Microbiol. 2017;83:e00380-17. https://doi.org/10.1128/AEM.00380-17   DOI
133 Jiao A, Diao H, Yu B, He J, Yu J, Zheng P, et al. Infusion of short chain fatty acids in the ileum improves the carcass traits, meat quality and lipid metabolism of growing pigs. Anim Nutr. 2021;7:94-100. https://doi.org/10.1016/j.aninu.2020.05.009   DOI
134 Gilbert MS, Ijssennagger N, Kies AK, van Mil SWC. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry. Am J Physiol Gastrointest Liver Physiol. 2018;315:G159-70. https://doi.org/10.1152/ajpgi.00319.2017   DOI
135 Ran-Ressler RR, Khailova L, Arganbright KM, Adkins-Rieck CK, Jouni ZE, Koren O, et al. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLOS ONE. 2011;6:e29032. https://doi.org/10.1371/journal.pone.0029032   DOI
136 Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S. Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metab Disord. 2005;5:289-303. https://doi.org/10.2174/1568008054863781   DOI
137 Lin S, Yang X, Yuan P, Yang J, Wang P, Zhong H, et al. Undernutrition shapes the gut microbiota and bile acid profile in association with altered gut-liver FXR signaling in weaning pigs. J Agric Food Chem. 2019;67:3691-701. https://doi.org/10.1021/acs.jafc.9b01332   DOI
138 Liu WC, Ye M, Liao JH, Zhao ZH, Kim IH, An LL. Application of complex probiotics in swine nutrition - a review. Ann Anim Sci. 2018;18:335-50. https://doi.org/10.2478/aoas2018-0005   DOI
139 van Wettere WHEJ, Willson NL, Pain SJ, Forder REA. Effect of oral polyamine supplementation pre-weaning on piglet growth and intestinal characteristics. Animal. 2016;10:1655-9. https://doi.org/10.1017/S1751731116000446   DOI
140 Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62:67-72. https://doi.org/10.1079/pns2002207   DOI
141 Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol. 2000;66:1654-61. https://doi.org/10.1128/aem.66.4.1654-1661.2000   DOI
142 Mishiro T, Kusunoki R, Otani A, Ansary MMU, Tongu M, Harashima N, et al. Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globuleEGF factor 8. Lab Invest. 2013;93:834-43. https://doi.org/10.1038/labinvest.2013.70   DOI
143 Liu Y. Fatty acids, inflammation and intestinal health in pigs. J Anim Sci Biotechnol. 2015;6:41. https://doi.org/10.1186/s40104-015-0040-1   DOI
144 Zhong X, Zhang Z, Wang S, Cao L, Zhou L, Sun A, et al. Microbial-driven butyrate regulates jejunal homeostasis in piglets during the weaning stage. Front Microbiol. 2019;9:3335. https://doi.org/10.3389/fmicb.2018.03335   DOI
145 Han Y, Zhao Q, Tang C, Li Y, Zhang K, Li F, et al. Butyrate mitigates weanling piglets from lipopolysaccharide-induced colitis by regulating microbiota and energy metabolism of the gut-liver axis. Front Microbiol. 2020;11:588666. https://doi.org/10.3389/fmicb.2020.588666   DOI
146 Parois SP, Eicher SD, Lindemann SR, Marchant JN. Potential improvements of the cognition of piglets through a synbiotic supplementation from 1 to 28 days via the gut microbiota. Sci Rep. 2021;11:24113. https://doi.org/10.1038/s41598-021-03565-5   DOI
147 Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016;39:763-81. https://doi.org/10.1016/j.tins.2016.09.002   DOI
148 Cao G, Tao F, Hu Y, Li Z, Zhang Y, Deng B, et al. Positive effects of a: Clostridium butyricum-based compound probiotic on growth performance, immune responses, intestinal morphology, hypothalamic neurotransmitters, and colonic microbiota in weaned piglets. Food Funct. 2019;10:2926-34. https://doi.org/10.1039/c8fo02370k   DOI
149 Valent D, Arroyo L, Fabrega E, Font-i-Furnols M, Rodriguez-Palmero M, Moreno-Munoz JA, et al. Effects of a high-fat-diet supplemented with probiotics and ω3-fatty acids on appetite regulatory neuropeptides and neurotransmitters in a pig model. Benef Microbes. 2020;11:347-59. https://doi.org/10.3920/BM2019.0197   DOI
150 Nowak P, Kasprowicz-Potocka M, Zaworska A, Nowak W, Stefanska B, Sip A, et al. The effect of eubiotic feed additives on the performance of growing pigs and the activity of intestinal microflora. Arch Anim Nutr. 2017;71:455-69. https://doi.org/10.1080/1745039X.2017.1390181   DOI
151 Zhang J, Chen X, Liu P, Zhao J, Sun J, Guan W, et al. Dietary clostridium butyricum induces a phased shift in fecal microbiota structure and increases the acetic acid-producing bacteria in a weaned piglet model. J Agric Food Chem. 2018;66:5157-66. https://doi.org/10.1021/acs.jafc.8b01253      DOI
152 Jones ML, Tomaro-Duchesneau C, Prakash S. The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol. 2014;22:306-8. https://doi.org/10.1016/j.tim.2014.04.010   DOI
153 Wang J, Ji H. Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Curr Protein Pept Sci. 2019;20:125-31. https://doi.org/10.2174/1389203719666180517100339   DOI
154 Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci. 2019;20:1214. https://doi.org/10.3390/ijms20051214   DOI
155 Molinero N, Ruiz L, Sanchez B, Margolles A, Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Front Physiol. 2019;10:185. https://doi.org/10.3389/fphys.2019.00185   DOI
156 Fan P, Song P, Li L, Huang C, Chen J, Yang W, et al. Roles of biogenic amines in intestinal signaling. Curr Protein Pept Sci. 2017;18:532-40. https://doi.org/10.2174/1389203717666160627073048   DOI
157 Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE. Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod. 2005;72:842-50. https://doi.org/10.1095/biolreprod.104.036293   DOI
158 Nakamura A, Ooga T, Matsumoto M. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes. 2019;10:159-71. https://doi.org/10.1080/19490976.2018.1494466   DOI
159 Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. The molecular and physiological effects of protein-derived polyamines in the intestine. Nutrients. 2020;12:197. https://doi.org/10.3390/nu12010197   DOI
160 Zhang G, Ducatelle R, Pasmans F, D'Herde K, Huang L, Smet A, et al. Effects of helicobacter suis γ- glutamyl transpeptidase on lymphocytes: modulation by glutamine and glutathione supplementation and outer membrane vesicles as a putative delivery route of the enzyme. PLOS ONE 2014;9:e77966. https://doi.org/10.1371/journal.pone.0077966   DOI
161 Blachier F, Beaumont M, Kim E. Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin. Curr Opin Clin Nutr Metab Care. 2019;22:68-75. https://doi.org/10.1097/MCO.0000000000000526   DOI
162 Blachier F, Andriamihaja M, Kong XF. Fate of undigested proteins in the pig large intestine: what impact on the colon epithelium? Anim Nutr. 2022;9:110-8. https://doi.org/10.1016/j.aninu.2021.08.001   DOI
163 Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128-33. https://doi.org/10.1016/j.brainres.2018.03.015   DOI
164 Kobek-Kjeldager C, Schonherz AA, Canibe N, Pedersen LJ. Diet and microbiota-gut-brain axis in relation to tail biting in pigs: a review. Appl Anim Behav Sci. 2022;246:105514. https://doi.org/10.1016/j.applanim.2021.105514   DOI
165 Henry Y, Seve B, Mounier A, Ganier P. Growth performance and brain neurotransmitters in pigs as affected by tryptophan, protein, and sex. J Anim Sci. 1996;74:2700-10. https://doi.org/10.2527/1996.74112700x   DOI
166 Saraf MK, Piccolo BD, Bowlin AK, Mercer KE, LeRoith T, Chintapalli SV, et al. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome. 2017;5:77. https://doi.org/10.1186/s40168-017-0297-z   DOI
167 LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160-8. https://doi.org/10.1016/j.copbio.2012.08.005   DOI
168 Zhang C, Yu M, Yang Y, Mu C, Su Y, Zhu W. Effect of early antibiotic administration on cecal bacterial communities and their metabolic profiles in pigs fed diets with different protein levels. Anaerobe. 2016;42:188-96. https://doi.org/10.1016/j.anaerobe.2016.10.016   DOI
169 Yu D, Zhu W, Hang S. Effects of long-term dietary protein restriction on intestinal morphology, digestive enzymes, gut hormones, and colonic microbiota in pigs. Animals. 2019;9:180. https://doi.org/10.3390/ani9040180   DOI
170 Chen X, Song P, Fan P, He T, Jacobs D, Levesque CL, et al. Moderate dietary protein restriction optimized gut microbiota and mucosal barrier in growing pig model. Front Cell Infect Microbiol. 2018;8:246. https://doi.org/10.3389/fcimb.2018.00246   DOI
171 Yu M, Zhang C, Yang Y, Mu C, Su Y, Yu K, et al. Long-term effects of early antibiotic intervention on blood parameters, apparent nutrient digestibility, and fecal microbial fermentation profile in pigs with different dietary protein levels. J Anim Sci Biotechnol. 2017;8:60. https://doi.org/10.1186/s40104-017-0192-2   DOI
172 Hu J, Nie Y, Chen J, Zhang Y, Wang Z, Fan Q, et al. Gradual changes of gut microbiota in weaned miniature piglets. Front Microbiol. 2016;7:1727. https://doi.org/10.3389/fmicb.2016.01727   DOI
173 LeBlanc JG, Chain F, Martin R, Bermudez-Humaran LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017;16:79. https://doi.org/10.1186/s12934-017-0691-z   DOI
174 Lauridsen C, Matte JJ, Lessard M, Celi P, Litta G. Role of vitamins for gastro-intestinal functionality and health of pigs. Anim Feed Sci Technol. 2021;273:114823. https://doi.org/10.1016/j.anifeedsci.2021.114823   DOI
175 Bergamaschi M, Tiezzi F, Howard J, Huang YJ, Gray KA, Schillebeeckx C, et al. Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome. 2020;8:110. https://doi.org/10.1186/s40168-020-00888-9   DOI
176 Woonwong Y, Tien DD, Thanawongnuwech R. The future of the pig industry after the introduction of African swine fever into Asia. Anim Front. 2020;10:30-7. https://doi.org/10.1093/af/vfaa037   DOI
177 Augere-Granier ML. The EU pig meat sector. Cardiff: European Parliamentary Research Service; 2020. Report No.: PE 652.044.
178 Maltecca C, Bergamaschi M, Tiezzi F. The interaction between microbiome and pig efficiency: a review. J Anim Breed Genet. 2020;137:4-13. https://doi.org/10.1111/jbg.12443   DOI
179 Oh JK, Chae JP, Pajarillo EAB, Kim SH, Kwak MJ, Eun JS, et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Anim Sci J. 2020;91:e13418. https://doi.org/10.1111/asj.13418   DOI
180 Gardiner GE, Metzler-Zebeli BU, Lawlor PG. Impact of intestinal microbiota on growth and feed efficiency in pigs: a review. Microorganisms. 2020;8:1886. https://doi.org/10.3390/microorganisms8121886   DOI
181 Wang X, Tsai T, Deng F, Wei X, Chai J, Knapp J, et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome. 2019;7:109. https://doi.org/10.1186/s40168-019-0721-7   DOI
182 Jiang H, Fang S, Yang H, Chen C. Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. J Anim Sci. 2021;99:skab045. https://doi.org/10.1093/jas/skab045   DOI
183 Hillman ET, Lu H, Yao T, Nakatsu CH. Microbial ecology along the gastrointestinal tract. Microbes Environ. 2017;32:300-13. https://doi.org/10.1264/jsme2.ME17017   DOI
184 Wylensek D, Hitch TCA, Riedel T, Afrizal A, Kumar N, Wortmann E, et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat Commun. 2020;11:6389. https://doi.org/10.1038/s41467-020-19929-w   DOI
185 Lin S, Yang X, Long Y, Zhong H, Wang P, Yuan P, et al. Dietary supplementation with Lactobacillus plantarum modified gut microbiota, bile acid profile and glucose homoeostasis in weaning piglets. Br J Nutr. 2020;124:797-808. https://doi.org/10.1017/S0007114520001774   DOI
186 Song M, Yang Q, Zhang F, Chen L, Su H, Yang X, et al. Hyodeoxycholic acid (HDCA) suppresses intestinal epithelial cell proliferation through FXR-PI3K/AKT pathway, accompanied by alteration of bile acids metabolism profiles induced by gut bacteria. FASEB J. 2020;34:7103-17. https://doi.org/10.1096/fj.201903244R   DOI
187 Gruner N, Mattner J. Bile acids and microbiota: multifaceted and versatile regulators of the liver-gut axis. Int J Mol Sci. 2021;22:1397. https://doi.org/10.3390/ijms22031397   DOI
188 Ni Dhonnabhain R, Xiao Q, O'Malley D. Aberrant gut-to-brain signaling in irritable bowel syndrome - the role of bile acids. Front Endocrinol. 2021;12:745190. https://doi.org/10.3389/fendo.2021.745190   DOI
189 Zhan K, Zheng H, Li J, Wu H, Qin S, Luo L, et al. Gut microbiota-bile acid crosstalk in diarrhea-irritable bowel syndrome. BioMed Res Int. 2020;2020:3828249. https://doi.org/10.1155/2020/3828249   DOI
190 Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8:172-84. https://doi.org/10.1080/19490976.2017.1290756   DOI
191 Luise D, Chalvon-Demersay T, Lambert W, Bosi P, Trevisi P. Meta-analysis to evaluate the impact of the reduction of dietary crude protein on the gut health of post-weaning pigs. Ital J Anim Sci. 2021;20:1386-97. https://doi.org/10.1080/1828051X.2021.1952911   DOI
192 Kwon MS, Jo HE, Lee J, Choi KS, Yu D, Oh YS, et al. Alteration of the gut microbiota in post-weaned calves following recovery from bovine coronavirus-mediated diarrhea. J Anim Sci Technol. 2021;61:125-36.
193 Grilli E, Tugnoli B, Foerster CJ, Piva A. Butyrate modulates inflammatory cytokines and tight junctions components along the gut of weaned pigs. J Anim Sci. 2016;94:433-6. https://doi.org/10.2527/jas.2015-9787   DOI
194 Zhang Y, Chen H, Zhu W, Yu K. Cecal infusion of sodium propionate promotes intestinal development and jejunal barrier function in growing pigs. Animals. 2019;9:284. https://doi.org/10.3390/ani9060284   DOI
195 Bugenyi AW, Cho HS, Heo J. Association between oropharyngeal microbiome and weight gain in piglets during pre and post weaning life. J Anim Sci Technol. 2020;62:247-62. https://doi.org/10.5187/jast.2020.62.2.247   DOI
196 Wang K, Hu C, Tang W, Azad MAK, Zhu Q, He Q, et al. The enhancement of intestinal immunity in offspring piglets by maternal probiotic or synbiotic supplementation is associated with the alteration of gut microbiota. Front Nutr. 2021;8:686053. https://doi.org/10.3389/fnut.2021.686053   DOI
197 Barba-Vidal E, Martin-Orue SM, Castillejos L. Review: are we using probiotics correctly in post-weaning piglets? Animal. 2018;12:2489-98. https://doi.org/10.1017/S1751731118000873   DOI
198 Liu H, Hou C, Wang G, Jia H, Yu H, Zeng X, et al. Lactobacillus reuteri I5007 modulates intestinal host defense peptide expression in the model of IPEC-J2 cells and neonatal piglets. Nutrients. 2017;9:559. https://doi.org/10.3390/nu9060559   DOI
199 Lu X, Zhang M, Zhao L, Ge K, Wang Z, Jun L, et al. Growth performance and post-weaning diarrhea in piglets fed a diet supplemented with probiotic complexes. J Microbiol Biotechnol. 2018;28:1791-9. https://doi.org/10.4014/jmb.1807.07026   DOI