DOI QR코드

DOI QR Code

Inhibitory effects of hydroxygenkwanin on platelets aggregation via regulation of phosphoproteins in collagen-induced human platelets

Collagen 유도의 사람 혈소판에서 인산화 단백질 조절을 통한 hydroxygenkwanin의 혈소판 응집억제 효과

  • Chang-Eun Park (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University) ;
  • Dong-Ha Lee (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University)
  • Received : 2023.02.22
  • Accepted : 2023.03.17
  • Published : 2023.12.31

Abstract

Cardiovascular disease (CVD) is increasingly increasing as the main cause of death worldwide, and activation of platelet in vascular damage is one of the important causes of CVD. In recent, there is a growing interest in anti-thrombotic materials through platelet suppression, and efforts are being made to reduce side effects by using natural bioactive compounds. Known as one of the Flavonoids, hydroxygenkwanin (HGK) is a purified substance in Daphne Genkwa, which is known to have antibacterial, anti-inflammatory and anti-cancer effects, and has been reported to serve as an inhibitor of tissue factor that prevents thrombosis, but its anti-platelet effects and the action mechanisms is not known. In this study, we confirmed that the effects of HGK on the collagen-induced human platelets activation. HGK suppressed phosphorylation of PI3K/AKT and mitogen-activated protein kinases during platelet signaling, and reduced granule secretion in platelets such as ATP and serotonin. In addition, HGK inhibited the phosphorylation of cPLA2 and strongly undermined the production of TXA2, which is a powerful aggregation amplifier. As a result, the platelet aggregation derived by Collagen, a cohesive induced substance, was strongly suppressed by HGK to an IC50 of 86.36 µM. Therefore, HGK might be worth the antithrombotic substance that inhibits the activation and aggregation of human platelets that occur through blood vessel damage.

심혈관 질환(CVD)은 전 세계적으로 주요 사망 원인으로써 갈수록 증가하는 추세이며, 혈관 손상이 발생하였을 때, 혈전이 과도하게 형성되는 것이 그 원인인 중 하나이다. 근래에 혈소판 억제를 통한 항혈전 물질에 대한 관심이 커지고 있으며 천연 생물활성 화합물을 사용함으로써 부작용을 줄이려는 노력이 이루어지고 있다. Flavonoid 중 하나로 알려진 hydroxygenkwanin(HGK)은 팥꽃나무(Daphne genkwa)에서 정제되는 물질로서 항균, 항염증 및 항암 효과가 있다고 알려져 있으며, 혈전증을 예방하는 조직 인자의 억제제 역할을 한다고 보고되었지만 항혈소판 효과와 그 작용기전에 대해서는 거의 알려지지 않았다. 본 연구를 통해 HGK가 collagen 유도의 사람 혈소판 응집에 미치는지 확인하였고, 그 작용 기전을 확인하였다. HGK은 혈소판 신호 전달 과정에서 PI3K/AKT 및 MAPK의 인산화를 억제하였고, ATP 및 serotonin 등의 혈소판 내 과립 분비를 감소하였다. . 또한, HGK는 cPLA2의 인산화를 억제하며 응집 촉진물질인 TXA2 생성을 강하게 저해하였다. 결과적으로 응집 유도 물질인 collagen가 유도한 혈소판 응집을 86.36 µM의 IC50로 강하게 억제하였다. 그러므로, 본 연구를 통해 HGK가 혈관 손상을 통해 일어나는 사람 혈소판의 활성화 및 응집을 억제하는 항혈전 물질로 가치가 있음을 분명히 하였다.

Keywords

Acknowledgement

Funding for this paper was provided by Namseoul University.

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2016) Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation 133: e38-e48. doi: 10.1161/CIR.0000000000000350
  2. Andrews RK, Berndt MC (2004) Platelet physiology and thrombosis. Thromb Res 114: 447-453. doi: 10.1016/j.thromres.2004.07.020
  3. Barrett NE, Holbrook L, Jones S, Kaiser WJ, Moraes LA, Rana R, Sage T, Stanley RG, Tucker KL, Wright B, Gibbins JM (2008) Future innovations in anti-platelet therapies. Br J Pharmacol 154: 918-939. doi: 10.1038/bjp.2008.151
  4. Badimon L, Vilahur G, Padro T (2010) Nutraceuticals and atherosclerosis: human trials. Cardiovasc Ther 28: 202-215. doi: 10.1111/j.1755-5922.2010.00189.x
  5. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetr J, Lamuela-Raventos RM, Serra-Majem L, Pinto X, Basora J, Munoz MA, Sorli JV, Martinez JA, Martinez-Gonzalez MA (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368: 1279-1290. doi: 10.1056/NEJMoa1200303
  6. Irfan M, Kwon TH, Yun BS, Park NH, Rhee MH (2018) Eisenia bicyclis (brown alga) modulates platelet function and inhibits thrombus formation via impaired P2Y12 receptor signaling pathway. Phytomedicine 40: 79-87. doi: 10.1016/j.phymed.2018.01.003
  7. Rastogi S, Pandey MM, Rawat A (2016) Traditional herbs: a remedy for cardiovascular disorders. Phytomedicine 23: 1082-1089. doi: 10.1016/j.phymed.2015.10.012
  8. Irfan M, Jeong D, Kwon HW, Shin JH, Park SJ, Kwak D, Kim TH, Lee DH, Park HJ, Rhee MH (2018) Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling. Vascul Pharmacol 109: 45-55. doi: 10.1016/j.vph.2018.06.002
  9. Adam F, Kauskot A, Rosa JP, Bryckaert M (2008) Mitogen activated protein kinases in hemostasis and thrombosis. J Thromb Haemost 6: 2007-2016. doi: 10.1111/j.1538-7836.2008.03169.x
  10. Bugaud F, Nadal-Wollbold F, Levy-Toledano S, Rosa JP, Bryckaert M (1999) Regulation of c-jun-NH2 terminal kinase and extracellular-signal regulated kinase in human platelets. Blood 94: 3800-3805. doi: 10.1182/blood.V94.11.3800
  11. Kramer RM, Roberts EF, Strifler BA, Johnstone EM (1995) Thrombin induces activation of p38 MAP kinase in human platelets. J Biol Chem 270: 27395-27398. doi: 10.1074/jbc.270.46.27395
  12. Nadal-Wollbold F, Pawlowski M, Levy-Toledano S, Berrou E, Rosa JP, Bryckaert M (2002) Platelet ERK2 activation by thrombin is dependent on calcium and conventional protein kinases C but not Raf-1 or B-Raf. FEBS Lett 531: 475-482. doi: 10.1016/s0014-5793(02)03587-1
  13. Michelson AD (2010) Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov 9: 154-169. doi: 10.1038/nrd2957
  14. Flevaris P, Li Z, Zhang G, Zheng Y, Liu J, Du X (2009) Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 113: 893-901. doi: 10.1182/blood-2008-05-155978
  15. Kramer RM, Roberts EF, Um SL, Borsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA (1996) p38 mitogenactivated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem 271: 27723-27729. doi: 10.1074/jbc.271.44.27723
  16. McNicol A, Shibou TS (1998) Translocation and phosphorylation of cytosolic phospholipase A2 in activated platelets. Thromb Res 92: 19-26. doi: 10.1016/s0049-3848(98)00097-8
  17. Chuang WY, Kung PH, Kuo CY, Wu CC (2013) Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway, Thromb Haemost 109: 1120-1130. doi: 10.1160/TH12-09-0636
  18. Mohamed TA, Hegazy MF, Abd El Aty AA, Ghabbour HA, Alsaid MS, Shahat AA, Pare PW (2017) Antimicrobial sesquiterpene lactones from Artemisia sieberi. J Asian Nat Prod Res 19: 1093-1101. doi:10.1080/10286020.2017.1302939
  19. Zhang CF, Zhang SL, He X, Yang XL, Wu HT, Lin BQ, Jiang CP, Wang J, Yu CH, Yang ZL, Wang CZ, Li P, Yuan CS (2014) Antioxidant effects of Genkwa flos flavonoids on Freunds adjuvant-induced rheumatoid arthritis in rats. J Ethnopharmacol 153: 793-800. doi:10.1016/j.jep.2014.03.046
  20. Ekuadzi E, Dickson R, Fleischer T, Annan K, Pistorius D, Oberer L, Annan K, Gibbons S (2014) Flavonoid glycosides from the stem bark of Margaritaria discoidea demonstrate antibacterial and free radical scavenging activities. Phytother Res 28: 784-787. doi:10.1002/ptr.5053
  21. Taguchi N, Yuriguchi M, Ando T, Kitai R, Aoki H, Kunisada T (2019) Flavonoids with Two OH Groups in the B-Ring Promote Pigmented Hair Regeneration. Biol Pharm Bull 42: 1446-1449. doi:10.1248/bpb.b19-00295
  22. Leu YL, Wang TH, Wu CC, Huang KY, Jiang YW, Hsu YC, Chen CY (2020) Hydroxygenkwanin Suppresses Non-Small Cell Lung Cancer Progression by Enhancing EGFR Degradation. Molecules 25(4). doi: ARTN 94110.3390/molecules25040941
  23. Wang Y, Xu YS, Yin LH, Xu LN, Peng JY, Zhou H, Kang W (2013) Synergistic anti-glioma effect of Hydroxygenkwanin and Apigenin in vitro. Chem Biol Interact 206: 346-355. doi: 10.1016/j.cbi.2013.10.009
  24. Huang YC, Lee PC, Wang JJ, Hsu YC (2019) Anticancer Effect and Mechanism of Hydroxygenkwanin in Oral Squamous Cell Carcinoma. Front Oncol 9: 911. doi:10.3389/fonc.2019.00911
  25. Chen CY, Chen CC, Chuang WY, Leu YL, Ueng SH, Hsueh C (2020) Hydroxygenkwanin Inhibits Class I HDAC Expression and Synergistically Enhances the Antitumor Activity of Sorafenib in Liver Cancer Cells. Front Oncol 10: 216. doi:10.3389/fonc.2020.00216
  26. Jiang W, Kou J, Zhang Z, Yu B (2009) The effects of twelve representative flavonoids on tissue factor expression in human monocytes: structure-activity relationships. Thromb Res 124: 714-720. doi:10.1016/j.thromres
  27. Patrono C (1994) Aspirin as an antiplatelet drug. N Engl J Med 330: 1287-1294. doi: 10.1056/NEJM199405053301808
  28. Calderwood DA (2004) Integrin activation. J Cell Sci 117: 657-666. doi: 10.1242/jcs.01014
  29. Chang MC, Wang TM, Yeung SY, Jeng PY, Liao CH, Lin CC, Lin BR, Jeng JH (2011) Antiplatelet effect by p-cresol, a uremic and environmental toxicant, is related to inhibition of reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. Atherosclerosis 219: 559-565. doi: 10.1016/j.atherosclerosis.2011.09.031
  30. Cipollone F, Patrignani P, Greco A, Panara MR, Padovano R, Cuccurullo F, Patrono C, Rebuzzi AG, Liuzzo G, Quaranta G, Maseri A (1997) Differential suppression of thromboxane biosynthesis by indobufen and aspirin in patients with unstable angina. Circulation 96: 1109-1116. doi: 10.1161/01.cir.96.4.1109
  31. Patrono C (2001) Aspirin: new cardiovascular uses for an old drug. Am J Med 110: 62S-65S. doi: 10.1016/s0002-9343(00)00645-8