DOI QR코드

DOI QR Code

Structure-Activity Relationship and Evaluation of Phenethylamine and Tryptamine Derivatives for Affinity towards 5-Hydroxytryptamine Type 2A Receptor

  • Shujie, Wang (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Anlin, Zhu (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Suresh, Paudel (Pharmacology Laboratory, College of Pharmacy, Chonnam National University) ;
  • Choon-Gon, Jang (Pharmacology Laboratory, College of Pharmacy, Sungkyunkwan University) ;
  • Yong Sup, Lee (Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Kyeong-Man, Kim (Pharmacology Laboratory, College of Pharmacy, Chonnam National University)
  • Received : 2022.07.12
  • Accepted : 2022.09.20
  • Published : 2023.03.01

Abstract

Among 14 subtypes of serotonin receptors (5-HTRs), 5-HT2AR plays important roles in drug addiction and various psychiatric disorders. Agonists for 5-HT2AR have been classified into three structural groups: phenethylamines, tryptamines, and ergolines. In this study, the structure-activity relationship (SAR) of phenethylamine and tryptamine derivatives for binding 5-HT2AR was determined. In addition, functional and regulatory evaluation of selected compounds was conducted for extracellular signal-regulated kinases (ERKs) and receptor endocytosis. SAR studies showed that phenethylamines possessed higher affinity to 5-HT2AR than tryptamines. In phenethylamines, two phenyl groups were attached to the carbon and nitrogen (R3 ) atoms of ethylamine, the backbone of phenethylamines. Alkyl or halogen groups on the phenyl ring attached to the β carbon exerted positive effects on the binding affinity when they were at para positions. Oxygen-containing groups attached to R3 exerted mixed influences depending on the position of their attachment. In tryptamine derivatives, tryptamine group was attached to the β carbon of ethylamine, and ally groups were attached to the nitrogen atom. Oxygen-containing substituents on large ring and alkyl substituents on the small ring of tryptamine groups exerted positive and negative influence on the affinity for 5-HT2AR, respectively. Ally groups attached to the nitrogen atom of ethylamine exerted negative influences. Functional and regulatory activities of the tested compounds correlated with their affinity for 5-HT2AR, suggesting their agonistic nature. In conclusion, this study provides information for designing novel ligands for 5-HT2AR, which can be used to control psychiatric disorders and drug abuse.

Keywords

Acknowledgement

This research was supported by the Ministry of Food and Drug Safety (19182MFDS403) and the National Research Foundation of Korea (2020R1F1A1072302) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (KRF-2020R1I1A3062151).

References

  1. Adams, K. H., Hansen, E. S., Pinborg, L. H., Hasselbalch, S. G., Svarer, C., Holm, S., Bolwig, T. G. and Knudsen, G. M. (2005) Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding in the caudate nuclei. Int. J. Neuropsychopharmacol. 8, 391-401. https://doi.org/10.1017/S1461145705005055
  2. Beom, S., Cheong, D., Torres, G., Caron, M. G. and Kim, K. M. (2004) Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. J. Biol. Chem. 279, 28304-28314. https://doi.org/10.1074/jbc.M403899200
  3. Bonhaus, D. W., Bach, C., Desouza, A., Salazar, F. R., Matsuoka, B. D., Zuppan, P., Chan, H. W. and Eglen, R. M. (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol. 115, 622-628. https://doi.org/10.1111/j.1476-5381.1995.tb14977.x
  4. Brown, P. and Gerfen, C. R. (2006) Plasticity within striatal direct pathway neurons after neonatal dopamine depletion is mediated through a novel functional coupling of serotonin 5-HT2 receptors to the ERK 1/2 map kinase pathway. J. Comp. Neurol. 498, 415-430. https://doi.org/10.1002/cne.21034
  5. Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., Tyacke, R. J., Leech, R., Malizia, A. L., Murphy, K., Hobden, P., Evans, J., Feilding, A., Wise, R. G. and Nutt, D. J. (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. U. S. A. 109, 2138-2143. https://doi.org/10.1073/pnas.1119598109
  6. Celada, P., Puig, M. V., Amargos-Bosch, M., Adell, A. and Artigas, F. (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J. Psychiatry Neurosci. 29, 252-265.
  7. Cheng, Y. and Prusoff, W. H. (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099-3108. https://doi.org/10.1016/0006-2952(73)90196-2
  8. Cho, D., Zheng, M., Min, C., Ma, L., Kurose, H., Park, J. H. and Kim, K. M. (2010) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D(2) receptors. Mol. Endocrinol. 24, 574-586. https://doi.org/10.1210/me.2009-0369
  9. Darmon, M., Al Awabdh, S., Emerit, M. B. and Masson, J. (2015) Insights into serotonin receptor trafficking: cell membrane targeting and internalization. Prog. Mol. Biol. Transl. Sci. 132, 97-126. https://doi.org/10.1016/bs.pmbts.2015.02.009
  10. Ferguson, S. S., Downey, W. E., 3rd, Colapietro, A. M., Barak, L. S., Menard, L. and Caron, M. G. (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363-366. https://doi.org/10.1126/science.271.5247.363
  11. Girault, J.-A., Valjent, E., Caboche, J. and Herve, D. (2007) ERK2: a logical AND gate critical for drug-induced plasticity? Curr. Opin. Pharmacol. 7, 77-85. https://doi.org/10.1016/j.coph.2006.08.012
  12. Glennon, R. A., Metwally, K., Dukat, M., Ismaiel, A. M., De Los Angeles, J., Herndon, J., Teitler, M. and Khorana, N. (2002) Ketanserin and spiperone as templates for novel serotonin 5-HT(2A) antagonists. Curr. Top. Med. Chem. 2, 539-558. https://doi.org/10.2174/1568026023393787
  13. Guo, S., Zhang, X., Zheng, M., Zhang, X., Min, C., Wang, Z., Cheon, S. H., Oak, M. H., Nah, S. Y. and Kim, K. M. (2015) Selectivity of commonly used inhibitors of clathrin-mediated and caveolaedependent endocytosis of G protein-coupled receptors. Biochim. Biophys. Acta 1848, 2101-2110. https://doi.org/10.1016/j.bbamem.2015.05.024
  14. Henley, J. R., Krueger, E. W., Oswald, B. J. and McNiven, M. A. (1998) Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85-99. https://doi.org/10.1083/jcb.141.1.85
  15. Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S. and Caron, M. G. (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and betaarrestins. J. Biol. Chem. 276, 37409-37414. https://doi.org/10.1074/jbc.M106728200
  16. Klein, L. M., Cozzi, N. V., Daley, P. F., Brandt, S. D. and Halberstadt, A. L. (2018) Receptor binding profiles and behavioral pharmacology of ring-substituted N,N-diallyltryptamine analogs. Neuropharmacology 142, 231-239. https://doi.org/10.1016/j.neuropharm.2018.02.028
  17. Klein, M. T., Dukat, M., Glennon, R. A. and Teitler, M. (2011) Toward selective drug development for the human 5-hydroxytryptamine 1E receptor: a comparison of 5-hydroxytryptamine 1E and 1F receptor structure-affinity relationships. J. Pharmacol. Exp. Ther. 337, 860-867. https://doi.org/10.1124/jpet.111.179606
  18. Krebs, T. S. and Johansen, P.-O. (2012) Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials. J. Psychopharmacol. 26, 994-1002. https://doi.org/10.1177/0269881112439253
  19. Leysen, J. (2004) 5-HT2 receptors. Curr. Drug Targets CNS Neurol. Disord. 3, 11-26. https://doi.org/10.2174/1568007043482598
  20. McKenna, D. J., Repke, D. B., Lo, L. and Peroutka, S. J. (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29, 193-198. https://doi.org/10.1016/0028-3908(90)90001-8
  21. McLean, T. H., Parrish, J. C., Braden, M. R., Marona-Lewicka, D., Gallardo-Godoy, A. and Nichols, D. E. (2006) 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J. Med. Chem. 49, 5794-5803. https://doi.org/10.1021/jm060656o
  22. Moreno, F. A., Wiegand, C. B., Taitano, E. K. and Delgado, P. L. (2006) Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry 67, 1735-1740. https://doi.org/10.4088/JCP.v67n1110
  23. Nelson, D. L., Lucaites, V. L., Wainscott, D. B. and Glennon, R. A. (1999) Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, -HT(2B) and 5-HT2C receptors. Naunyn Schmiedebergs Arch. Pharmacol. 359, 1-6. https://doi.org/10.1007/PL00005315
  24. Nichols, D. E. (2012) Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membrane Transport and Signaling 1, 559-579. https://doi.org/10.1002/wmts.42
  25. Okamoto, K., Imbe, H., Kimura, A., Donishi, T., Tamai, Y. and Senba, E. (2007) Activation of central 5HT2A receptors reduces the craniofacial nociception of rats. Neuroscience 147, 1090-1102. https://doi.org/10.1016/j.neuroscience.2007.05.012
  26. Parker, M. A., Marona-Lewicka, D., Lucaites, V. L., Nelson, D. L. and Nichols, D. E. (1998) A novel (benzodifuranyl) aminoalkane with extremely potent activity at the 5-HT2A receptor. J. Med. Chem. 41, 5148-5149. https://doi.org/10.1021/jm9803525
  27. Sibley, D. R. and Lefkowitz, R. J. (1985) Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317, 124-129. https://doi.org/10.1038/317124a0
  28. van der Bliek, A. M., Redelmeier, T. E., Damke, H., Tisdale, E. J., Meyerowitz, E. M. and Schmid, S. L. (1993) Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553-563. https://doi.org/10.1083/jcb.122.3.553
  29. Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F., Baebler, A., Vogel, H. and Hell, D. (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9, 3897-3902. https://doi.org/10.1097/00001756-199812010-00024
  30. Wang, J. Q. and Mao, L. (2019) The ERK pathway: molecular mechanisms and treatment of depression. Mol. Neurobiol. 56, 6197-6205. https://doi.org/10.1007/s12035-019-1524-3
  31. Yu, S. S., Lefkowitz, R. J. and Hausdorff, W. P. (1993) Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J. Biol. Chem. 268, 337-341. https://doi.org/10.1016/S0021-9258(18)54155-7
  32. Yuan, P., Zhou, R., Wang, Y., Li, X., Li, J., Chen, G., Guitart, X. and Manji, H. K. (2010) Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia. J. Affect. Disord. 124, 164-169. https://doi.org/10.1016/j.jad.2009.10.017
  33. Yun, H. M. and Rhim, H. (2011) The serotonin-6 receptor as a novel therapeutic target. Exp. Neurobiol. 20, 159-168. https://doi.org/10.5607/en.2011.20.4.159