• 제목/요약/키워드: series representations

검색결과 65건 처리시간 0.021초

UNITARY SERIES OF $GL_2(R)$ AND $GL_2(C)$

  • Kim, Seon-Ja
    • Communications of the Korean Mathematical Society
    • /
    • 제9권3호
    • /
    • pp.521-529
    • /
    • 1994
  • This paper studies the realization of irreducible unitary representations of $GL_2(R)$ and $GL_2(C)$ by Bargmann's classification[1]. Since the representations of general matrix groups can be obtained by the extensions of characters of a special linear group, we shall follow to a large extent the pattern of the results in [5], [6], and [8]. This article is divided into two sections. In the first section we describe the realization of principal series and discrete series and complementary series of $GL_2(R)$. The last section is devoted to the derivation of principal series and complementary series of $GL_2(C).

  • PDF

SERIES REPRESENTATIONS FOR THE EULER-MASCHERONI CONSTANT $\gamma$

  • Choi, June-Sang;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.75-84
    • /
    • 2002
  • The third important Euler-Mascheroni constant $\gamma$, like $\pi$ and e, is involved in representations, evaluations, and purely relationships among other mathematical constants and functions, in various ways. The main object of this note is to summarize some known series representaions for $\gamma$ with comments for their proofs, and to point out that one of those series representaions for $\gamma$ seems to be incorrectly recorded. A brief historical comment for $\gamma$ is also provided.

  • PDF

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • 제34권4호
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • 제34권1호
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • 제19권2호
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

CERTAIN INTEGRAL REPRESENTATIONS OF GENERALIZED STIELTJES CONSTANTS γk(a)

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • 제31권1호
    • /
    • pp.41-53
    • /
    • 2015
  • A large number of series and integral representations for the Stieltjes constants (or generalized Euler-Mascheroni constants) ${\gamma}_k$ and the generalized Stieltjes constants ${\gamma}_k(a)$ have been investigated. Here we aim at presenting certain integral representations for the generalized Stieltjes constants ${\gamma}_k(a)$ by choosing to use four known integral representations for the generalized zeta function ${\zeta}(s,a)$. As a by-product, our main results are easily seen to specialize to yield those corresponding integral representations for the Stieltjes constants ${\gamma}_k$. Some relevant connections of certain special cases of our results presented here with those in earlier works are also pointed out.

LEONHARD EULER (1707-1783) AND THE COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES

  • Srivastava, Hari Mohan
    • Journal of the Korean Mathematical Society
    • /
    • 제44권5호
    • /
    • pp.1163-1184
    • /
    • 2007
  • In this presentation dedicated to the tricentennial birth anniversary of the great eighteenth-century Swiss mathematician, Leonhard Euler (1707-1783), we begin by remarking about the so-called Basler problem of evaluating the Zeta function ${\zeta}(s)$ [in the much later notation of Georg Friedrich Bernhard Riemann (1826-1866)] when s=2, which was then of vital importance to Euler and to many other contemporary mathematicians including especially the Bernoulli brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinatingly large number of seemingly independent solutions have appeared in the mathematical literature ever since Euler first solved this problem in the year 1736. We then investigate various recent developments on the evaluations and representations of ${\zeta}(s)$ when $s{\in}{\mathbb{N}}{\backslash}\;[1],\;{\mathbb{N}}$ being the set of natural numbers. We emphasize upon several interesting classes of rapidly convergent series representations for ${\zeta}(2n+1)(n{\in}{\mathbb{N}})$ which have been developed in recent years. In two of many computationally useful special cases considered here, it is observed that ${\zeta}(3)$ can be represented by means of series which converge much more rapidly than that in Euler's celebrated formula as well as the series used recently by Roger $Ap\'{e}ry$ (1916-1994) in his proof of the irrationality of ${\zeta}(3)$. Symbolic and numerical computations using Mathematica (Version 4.0) for Linux show, among other things, that only 50 terms of one of these series are capable of producing an accuracy of seven decimal places.

NEW GENERALIZATION OF THE WRIGHT SERIES IN TWO VARIABLES AND ITS PROPERTIES

  • Belafhal, Abdelmajid;Chib, Salma;Usman, Talha
    • Communications of the Korean Mathematical Society
    • /
    • 제37권1호
    • /
    • pp.177-193
    • /
    • 2022
  • The main aim of this paper is to introduce a new generalization of the Wright series in two variables, which is expressed in terms of Hermite polynomials. The properties of the freshly defined function involving its auxiliary functions and the integral representations are established. Furthermore, a Gauss-Hermite quadrature and Gaussian quadrature formulas have been established to evaluate some integral representations of our main results and compare them with our theoretical evaluations using graphical simulations.

GIBBS PHENOMENON AND CERTAIN NONHARMONIC FOURIER SERIES

  • Rhee, Jung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • 제26권1호
    • /
    • pp.89-98
    • /
    • 2011
  • The Fourier series has a rapid oscillation near end points at jump discontinuity which is called the Gibbs phenomenon. There is an overshoot (or undershoot) of approximately 9% at jump discontinuity. In this paper, we prove that a bunch of series representations (certain nonharmonic Fourier series) give good approximations vanishing Gibbs phenomenon. Also we have an application for approximating some shape of upper part of a vehicle in a different way from the method of cubic splines and wavelets.