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UNITARY SERIES OF GL,(R) AND GIL,(C)

SEONIA KIM

1. Introduction

This paper studies the realization of irreducible unitary representa-
tions of GLy(R) and GL,(C) by Bargmann’s classification [1]. Since
the representations of general matrix groups can be obtained by the
extensions of characters of a special linear group, we shall follow to a
large extent the pattern of the results in [5], [6], and [8]. This article
is divided into two sections. In the first section we describe the realiza-
tion of principal series and discrete series and complementary series of
GLy(R). The last section is devoted to the derivation of principal series
and complementary series of GLy(C).

2. Unitary series of GLy(R)
First we find the unitary principal series of GL,(R).

PROPOSITION 2.1. An irreducible unitary representation of GLa(R)
is the family of induced representations Ils, where S is a pure imaginary

number and Ts(y)f(z) = sgn(bz + d)|bz + d|™' "5 f (%ﬁ_‘—;)

Moreover, s is induced by the character ps : P — C* and P is
the parabolic subgroup of GLy(R) and is thercfore an upper or lower
triangular group of matrices.

Proof. Let G = GL,(R) and consider an Iwasawa decomposition of
G. Then G = PK = MNK, where p = M N, and M, N are closed uni-
modular subgroups, and M normalizes N and K is a maximal compact
subgroup and has measure 1. Therefore, M is the group of diagonal ma-

0 1 b 1
Let A be the modular function on p such that A(p) = A(mn) = a(m),

trices, and N is the group of matrices of the form (1 b) or (1 0).
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where a is a continuous homomorphism o : M — R*. We also require
Jn f(mnm™Y)dn = a(m)” fx f(n)dn where f is a continuous function
on G with compact support and dn is a Haar measure. Let p(m) =
a(m)?, and let pg(z) = ps(mnk) = p(m)S*¥1 S € C. A continuous
homomorphism pg : p — C* is a character such that ps(mn) = p(m)*.

Let H(S) be the space of the representations II5 induced by ps, ie.,
Os(z)f(y) = f(yz), f € H(S), and f(py) = A(p)tpus(p)f(y). Then
f(mny) = p(m)*' f(y) and f|x is in L2(K) and H(S) is a Hilbert
space under the L?( K)-norm, and .

((=)es.ps) = [ Ta)ps(k)ps(Fidk

= / K ps(kz)dk.

Thus ps is unitary, i.e., |ps| = 1 iff S is pure imaginary. Consequently,
{Ils} = {p(m)~°~! f(any)} where S is pure imaginary, is an irreducible
unitary series of G. Since GL,(R) operates on the upper or lower half

plane with ¢(z) = %ﬂl&c— where

g:(z Z),gEG and z=z+y, y#0.

Therefore we can construct the realizations of this series as the above
result.

Remarks. (1) The representation of the above Proposition is called
the unitary principal series of GL,(R).
(2) Since the spherical function pg(z) = [, p(kz)*'dk and

ps(m) ~ —=p(m)s=1 - (2)

vn ()’
we can rewrite the unitary principal series of GL2(R) by the means of
Gamma function [5].
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THEOREM 2.2. There is a natural representation II} of GL2(R) on
L?(R?*) which contains each member of the holomorphic discrete series.
This can be called the discrete series representation and its realization
is as follows:

Space for

I} = {f holomorphic for Imz > 0 : AP

_ //1m>o F(2)2(1 = r2)"2rdrdf < oo)

3 0)f() = x4 70 (s ) o n 22

S

The representation II is obtained by using complex conjugates.

Proof. Let F be the Lie algebra of G. Then we can introduce the
following elements of F which are identified with the Lie algebra of 2 x 2
matrices

as well as

D=X,X_+X_X, + %—.
These elements can be thought of as belonging to the universal envelop-
ing algebra of F ®g C. Thus they generate a representation of G, the
universal covering group of GLy(R). Note that the kernel of the covering
map G — GL,(R) consists of exp(2rku), k € Z. The spectrum of (1)U
consists of all positive integers, since the harmonic oscillator hamilton-
ian has as its spectrum all even positive integers. Thus exp(2rku) is
represented by the identity operator on L?(R?), so the representation of



524 Seonja Kim

G actually comes from a representation of GLy(R). Let us denote this
last representation by vy. Then we can decompose v by

oC

L*(R)) = P H.

k=—o00

where Hy = {e*%(r)GL%*(R?), g € GL2(R)}. The az + b group acts
irreducibly on each Hy, this representation being intertwined with a
“standard model” via a Hankel transform. It follows a fortiori that
GL,(R) acts irreducibly on each K, via 7. Since spec(3)U consists of
positive integers, it is clear that each irreducible component v; must be
a holomorphic discrete series representation.

We claim that on Hy, the smallest element of spec(})U is |k| + 1.
In fact, consider our operators on Bargmann-Fock space H, a Hilbert
space of entire functions on C? with orthonormal basis (2/a!)'/2Z2,
o = (ai,03) > 0, on which (1)U acts as multiplication by |a| + 1.
Then the rotation group action h(z) — h(kz), k € O(2), f € L*(R?),
1s intertwined to a subgroup of the natural U(2) action on H, u(z) —
u(oz), o € u(2). As we know, each irreducible representation of U(2) is
contained exactly once in H, on one of the spaces Ej = span of {Z° :
la| = j}. On the space Ej, the operator (1)U is the scalar j + 1, and
the skew adjoint generator of the O(2) action on E; takes the values
-n—J7+1,...,7—1, 71, multiplied by :. This proves that the smallest
eigenvalue of (1)U on the +ij eigenspace of the generator of the O(2)
action is j + 1, as asserted. It follows that v, ~ H|+k|+1' Thus v contains

II} exactly twice, for each n > 2, and it contains III" once. Therefore,
the realization of the holomorphic discrete series is given on

H, = {f(z) holomorphic for Imz > 0: |f(2)]*(1 — »*)""%rdrdf < oo},
n> 2.

We can write I[I7(g)f(2) = (bz +d)™"f (Z;.;)

i6
Remark. I} (kg)f(2) = '™ f(e?*%2), where kg = (60 ._Oie) (NS

R/27Z. Thus spec(3)U has n as its smallest element. The Hilbert space



Unitary series of GLy(R) and GL2(C) 525

H, is nontrivial precisely for n > 2, so we obtain all the holomorphlc
discrete series representations I} thh n > 2. We do not get I in this
fashion. For any f, f' in the representation space of II} (H+(g) £ f' )
belongs to L2(GLy(R)) if n > 2, but not if n = 1. This 1mp11es that ITE
does not have such an appearance.

PROPOSITION 2.3. There is a unitary representation on the interval
-1<S<1{S#0).

Proof. Let I be an irreducible admissible representation of GLa(R)
on a space H and let ¢, be defined on H(S) by

¢n (Iwasawa decomposition of GLy(R))

B 1 =z a 0 cos sinf
= Pn 0 1 0 a; —sinf cosf
a1 1 n
= m(ay)pa(az)|—|2e™
az

s+ 16"19,
2

Y

where p;(t) = [t| (l—:—l)mi is a quasi-character on R* and S; is complex

number and S = S; — Sz and m = |m; — my| such that ,ulu;l(t) =
it]® (“I)m and m and n have the same parity, and y is as in Theorem

2.1. For any differentiable function f on GL,(R) and any compactly
supported distribution g we define A(u)f by

Ap)f(9) = uV(p(g)f) and p(u)f by p(p)f(g) = w(Mg™ "))

Then we can get the following relations;

P(Vi)pn = (S +1+n)enya,
p(V-)pn = (S+1—n)pnst2,

and s
p(D)pn = —

where V; and V_ and D are as in the proof of Theorem 2.2.

Pn
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On the other hand, we can obviously choose the length of vy arbitrar-
ily, say ag > 0, i.e., {(vg,vp) = ag? where ay > 0.

From (p(Vi)p(V-) — p(V_)p(Vi))on = —4ip(U) = 4nv,, we get
the condition C, — Cp42 = 4n. From the skew-Hermitian conditions
(P(V3)0n, Vnt2) = (v, —p(V_)vp42), we get the relation a?  ,=—Cpyiqd?.
This shows that C, is necessarily real and negative, and a choice of C,
completely determines C, for all n. The possible unitarization there-
fore depends uniquely on the choice of a negative number Cy. A similar
discussion can be carried out for the case when the parity is odd. Con-
sequently, we see that the condition for Cy to be negative amounts to
(82 —~1)=(5+1)(S—1) < 0. This amounts to S being pure imaginary
or S real and —1 < § < 1. The case when —1 < § < 1(S # 0) can be
unitarized by completing H(K).

COROLLARY 2.4. We can get the complementary series of GLy(R)
arising from the intervals 0 < S <1 and ~1 < § < 0 as follows:

H(S) = {f roclp - [ [ DR oo}

—00 — o0

and set Is(g)f(z) = |bz + d|ST1 f (,,—Ig)

3. Unitary series of GL,(C)

In this section we induce two different unitary irreducible representa-
tions of GL,(C). They are unitary principal series and unitary comple-
mentary series [8]. G'Ly(C) does not have a compact Cartan subgroup,
so it does not have a discrete series representation [8].

EXAMPLE 3.1. Consider the finite dimensional irreducible representa-

tion of GLy(C). The matrix (zl (1)) 1s identified by a single complex
21
parameter r = 227, and we may write f <i ?) = f(z), if f is con-

tinuous complex valued function on GLy(C). Then, f ((i (1J) §> =
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f (az+c>’ where ¢ = (? Z) € GL,(C). We conclude that Ay + kyp =

bx+d
1 0 a b a b
det[(x 1)((; d)] det(c d)
/\1:](,‘11: = s

bz + d,
bz + d bz +d

where A; is the entry of the diagonal matrix group D = {6 = ()\1 0 ) }

and k;; is the entry of the upper triangular matrix group

— (ki ki
A_{k_<0 k)}

The character a(é) is a continuous character of D. Then we can have
a(8) = A X?l AR? X? where pi1,¢1,p2,q2 are any complex numbers for
which p; — ¢; and py — ¢; are integers. Additionally, the necessary and
sufficient condition to be an inductive character a(4) is that r = p; — p,

and s = ¢z — ¢ are nonnegative integers, and o (( 1 (1)> (a 2)) =

Z C

tg \7' [ detg \” 7 detg
(b(j:eigd) (a:ce+gc) (az + c)?*(bT + )% = (det g)P (det g)* (b +

d)P2 P (b +d)72 7. Therefore, the finite dimensional irreducible repre-

sentation of GL,(C) is F2(¢)f(z) = a ((i ?) ((j Z)) - f (gf}:;)

THEOREM 3.2. The nontrivial unitary principal series of GL,(C) is
realized as follows:

Pisrun(9)f(2) = (bz + )bz + d)* f(

where

b
g= (f d) € GLy(C).

Proof. Let R(g)f(z) = f(g'2), g € GL2(C), z € C?. In this case, R(g)
commutes with the group of complex dilations: D(a)f(z) = |a|* f(az),
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a € C*. We expect to decompose R into irreducible via the spectral
decomposition of D.

Since C* = S x R*, this decomposition is accomplished by combining
Fourier series and the Mellin transform. Thus given 3(6,t) on S! x R*,
set SB(n,S) = fﬂoo Js1 B(8,)e?t5d0 dt for n € Z, 2 € R. Then we
get the inversion formula

B(,1) = (2r)~2 Z/ SB(n, S)e?t'S-14S

and the Plancherel formula

/ / 86,2t d6dt = (27)~2 Z / ISB(n, S)[2dS.

n=—-—oo

Thus, if we define

P,sf(z)= / / f(re'ez)e _’Sdﬂdr,

we see that, for f € C§°(R*), P, sf belongs to the space
Hes = {g € LH(R*\0) : g(re'’z) = r*o 7 e™g(2),

r>0, e ¢ S and /|g|2 < oo}

We make H,, s into a Hilbert space, with norm square fR‘l\o lg|?. There-

fore we get a representation on H, s given by 7, s5(g)f(2) = f(g*2),
f € Ha,s and then we can induce the homogeneity condition

g(az) = a*a*g(z), ae€ C*

with A = 7(1S — 1+ n), p = 1(:5 — 1 —n). By restricting the argument
of an element of H, s to the hyperplane z; = 1 and applying the result
of Example 3.1, e can make H, s unitarily equivalent to a representation
as given in the statement of the theorem.
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COROLLARY 3.3. The complementary series of G L,(C) is given by
the formula

CHE) = (b ) 5+ ) ()

with the inner product

(fi fa) = (i/2)? /@ o1 = 22l () Fal(z) e B iy g

and A +1=p+1=t

Proof. Applying Theorem 3.2 and using the results of [5] and [8], we
can get the above complementary series.
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