UNITARY SERIES OF $GL_2(\mathbb{R})$ AND $GL_2(\mathbb{C})$

SEONJA KIM

1. Introduction

This paper studies the realization of irreducible unitary representations of $GL_2(\mathbb{R})$ and $GL_2(\mathbb{C})$ by Bargmann's classification [1]. Since the representations of general matrix groups can be obtained by the extensions of characters of a special linear group, we shall follow to a large extent the pattern of the results in [5], [6], and [8]. This article is divided into two sections. In the first section we describe the realization of principal series and discrete series and complementary series of $GL_2(\mathbb{R})$. The last section is devoted to the derivation of principal series and complementary series of $GL_2(\mathbb{C})$.

2. Unitary series of $GL_2(\mathbb{R})$

First we find the unitary principal series of $GL_2(\mathbb{R})$.

PROPOSITION 2.1. An irreducible unitary representation of $GL_2(\mathbb{R})$ is the family of induced representations Π_S , where S is a pure imaginary number and $\Pi_S(y)f(x) = \operatorname{sgn}(bx+d)|bx+d|^{-1-S}f\left(\frac{ax+c}{bx+d}\right)$.

Moreover, Π_S is induced by the character $\mu_S : P \to \mathbb{C}^{\times}$ and P is the parabolic subgroup of $GL_2(\mathbb{R})$ and is therefore an upper or lower triangular group of matrices.

Proof. Let $G = GL_2(\mathbb{R})$ and consider an Iwasawa decomposition of G. Then G = PK = MNK, where $\rho = MN$, and M, N are closed unimodular subgroups, and M normalizes N and K is a maximal compact subgroup and has measure 1. Therefore, M is the group of diagonal matrices, and N is the group of matrices of the form $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$. Let Δ be the modular function on ρ such that $\Delta(\rho) = \Delta(mn) = \alpha(m)$,

Received February 14, 1994.

where α is a continuous homomorphism $\alpha: M \to \mathbb{R}^{\times}$. We also require $\int_{N} f(mnm^{-1})dn = \alpha(m)^{\gamma} \int_{N} f(n)dn$ where f is a continuous function on G with compact support and dn is a Haar measure. Let $\rho(m) = \alpha(m)^{\frac{1}{2}}$, and let $\rho_{S}(x) = \rho_{S}(mnk) = \rho(m)^{S+1}$, $S \in \mathbb{C}$. A continuous homomorphism $\mu_{S}: \rho \to \mathbb{C}^{\times}$ is a character such that $\mu_{S}(mn) = \rho(m)^{S}$.

Let H(S) be the space of the representations Π_S induced by μ_S , i.e., $\Pi_S(x)f(y)=f(yx), f\in H(S)$, and $f(\rho y)=\Delta(\rho)^{\frac{1}{2}}\mu_S(\rho)f(y)$. Then $f(mny)=\rho(m)^{S+1}f(y)$ and $f|_K$ is in $L^2(K)$ and H(S) is a Hilbert space under the $L^2(K)$ -norm, and

$$\langle \Pi(x)\rho_S, \rho_S \rangle = \int_K \Pi(x)\rho_S(k)\overline{\rho_S(k)}dk$$

= $\int K\rho_S(kx)dk$.

Thus μ_S is unitary, i.e., $|\mu_S| = 1$ iff S is pure imaginary. Consequently, $\{\Pi_S\} = \{\rho(m)^{-S-1}f(any)\}$ where S is pure imaginary, is an irreducible unitary series of G. Since $GL_2(\mathbb{R})$ operates on the upper or lower half plane with $g(z) = \frac{az+c}{bz+d}$ where

$$g=\left(egin{array}{cc} a & b \\ c & d \end{array}
ight),\ g\in G \quad {
m and} \quad z=x+iy,\ y
eq 0.$$

Therefore we can construct the realizations of this series as the above result.

Remarks. (1) The representation of the above Proposition is called the unitary principal series of $GL_2(\mathbb{R})$.

(2) Since the spherical function $\varphi_S(x) = \int_K \rho(kx)^{S+1} dk$ and

$$\varphi_S(m) \approx \frac{1}{\sqrt{n}} \rho(m)^{S-1} \frac{\Gamma\left(\frac{S}{2}\right)}{\Gamma\left(\frac{S+1}{2}\right)},$$

we can rewrite the unitary principal series of $GL_2(\mathbb{R})$ by the means of Gamma function [5].

THEOREM 2.2. There is a natural representation Π_n^+ of $GL_2(\mathbb{R})$ on $L^2(\mathbb{R}^2)$ which contains each member of the holomorphic discrete series. This can be called the discrete series representation and its realization is as follows:

Space for

$$\Pi_{n}^{+} = \left\{ f \text{ holomorphic for } \text{Im } z > 0 : \|f\|^{2} \\
= \iint_{Imz>0} |f(z)|^{2} (1 - r^{2})^{n-2} r dr d\theta < \infty \right\} \\
\Pi_{n}^{+}(g) f(z) = (bz + d)^{-n} f\left(\frac{az + c}{bz + d}\right), \ n \ge 2.$$

The representation Π_n^- is obtained by using complex conjugates.

Proof. Let \mathcal{F} be the Lie algebra of G. Then we can introduce the following elements of \mathcal{F} which are identified with the Lie algebra of 2×2 matrices

$$U = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$V_{+} = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}, \qquad V_{-} = \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}$$

$$X_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad X_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad \text{and} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

as well as

$$D = X_{+}X_{-} + X_{-}X_{+} + \frac{Z^{2}}{2}.$$

These elements can be thought of as belonging to the universal enveloping algebra of $\mathcal{F} \otimes_{\mathbb{R}} \mathbb{C}$. Thus they generate a representation of \tilde{G} , the universal covering group of $GL_2(\mathbb{R})$. Note that the kernel of the covering map $\tilde{G} \to GL_2(\mathbb{R})$ consists of $\exp(2\pi ku)$, $k \in \mathbb{Z}$. The spectrum of $(\frac{1}{i})U$ consists of all positive integers, since the harmonic oscillator hamiltonian has as its spectrum all even positive integers. Thus $\exp(2\pi ku)$ is represented by the identity operator on $L^2(\mathbb{R}^2)$, so the representation of

 \tilde{G} actually comes from a representation of $GL_2(\mathbb{R})$. Let us denote this last representation by γ . Then we can decompose γ by

$$L^2(R^2) = \bigoplus_{k=-\infty}^{\infty} H_k$$

where $H_k = \{e^{ik\theta}g(r)GL^2(R^2), g \in GL_2(\mathbb{R})\}$. The ax + b group acts irreducibly on each H_k , this representation being intertwined with a "standard model" via a Hankel transform. It follows a fortiori that $GL_2(\mathbb{R})$ acts irreducibly on each K_k , via γ . Since spec $(\frac{1}{i})U$ consists of positive integers, it is clear that each irreducible component γ_k must be a holomorphic discrete series representation.

We claim that on H_k , the smallest element of $\operatorname{spec}(\frac{1}{i})U$ is |k|+1. In fact, consider our operators on Bargmann-Fock space \mathcal{H} , a Hilbert space of entire functions on \mathbb{C}^2 with orthonormal basis $(2/\alpha!)^{1/2}Z^{\alpha}$, $\alpha=(\alpha_1,\alpha_2)\geq 0$, on which $(\frac{1}{i})U$ acts as multiplication by $|\alpha|+1$. Then the rotation group action $h(x)\mapsto h(kx),\ k\in O(2),\ f\in L^2(R^2)$, is intertwined to a subgroup of the natural U(2) action on $\mathcal{H},\ u(z)\mapsto u(\sigma z),\ \sigma\in u(2)$. As we know, each irreducible representation of U(2) is contained exactly once in \mathcal{H} , on one of the spaces $E_j=\operatorname{span}$ of $\{Z^\alpha: |\alpha|=j\}$. On the space E_j , the operator $(\frac{1}{i})U$ is the scalar j+1, and the skew adjoint generator of the O(2) action on E_j takes the values $-j_1-j+1,\ldots,j-1,j_1$, multiplied by i. This proves that the smallest eigenvalue of $(\frac{1}{i})U$ on the $\pm ij$ eigenspace of the generator of the O(2) action is j+1, as asserted. It follows that $\gamma_k \approx \Pi_{|k|+1}^+$. Thus γ contains Π_n^+ exactly twice, for each $n\geq 2$, and it contains Π_1^+ once. Therefore, the realization of the holomorphic discrete series is given on

$$\mathcal{H}_n = \{ f(z) \text{ holomorphic for } \operatorname{Im} z > 0 : |f(z)|^2 (1 - r^2)^{n-2} r dr d\theta < \infty \},$$

$$n \ge 2.$$

We can write $\Pi_n^+(g)f(z) = (bz+d)^{-r}f\left(\frac{az+c}{bz+d}\right)$.

Remark. $\Pi_n^+(k_\theta)f(z)=e^{in\theta}f(e^{2i\theta}z)$, where $k_\theta=\begin{pmatrix}e^{i\theta}&0\\0&i^{-i\theta}\end{pmatrix}$, $\theta\in R/2\pi Z$. Thus spec $(\frac{1}{i})U$ has n as its smallest element. The Hilbert space

 \mathcal{H}_n is nontrivial precisely for $n \geq 2$, so we obtain all the holomorphic discrete series representations Π_n^+ with $n \geq 2$. We do not get Π_1^+ in this fashion. For any f, f' in the representation space of Π_n^+ , $(\Pi_n^+(g)f, f')$ belongs to $L^2(GL_2(\mathbb{R}))$ if $n \geq 2$, but not if n = 1. This implies that Π_1^{\pm} does not have such an appearance.

PROPOSITION 2.3. There is a unitary representation on the interval $-1 < S < 1(S \neq 0)$.

Proof. Let Π be an irreducible admissible representation of $GL_2(\mathbb{R})$ on a space H and let φ_n be defined on H(S) by

$$\begin{split} & \varphi_n \text{ (Iwasawa decomposition of } GL_2(\mathbb{R})) \\ & = \varphi_n \left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \right) \\ & = \mu_1(a_1)\mu_2(a_2) |\frac{a_1}{a_2}|^{\frac{1}{2}} e^{in\theta} \\ & = y \frac{s+1}{2} e^{in\theta}, \end{split}$$

where $\mu_i(t) = |t|^{S_i} \left(\frac{t}{|t|}\right)^{m_i}$ is a quasi-character on R^{\times} and S_i is complex number and $S = S_1 - S_2$ and $m = |m_1 - m_2|$ such that $\mu_1 \mu_2^{-1}(t) = |t|^s \left(\frac{t}{|t|}\right)^m$ and m and n have the same parity, and y is as in Theorem 2.1. For any differentiable function f on $GL_2(\mathbb{R})$ and any compactly supported distribution μ we define $\lambda(\mu)f$ by

$$\lambda(\mu)f(g) = \mu^{\vee}(\rho(g)f)$$
 and $\rho(\mu)f$ by $\rho(\mu)f(g) = \mu(\lambda(g^{-1})f)$.

Then we can get the following relations;

$$\rho(V_+)\varphi_n = (S+1+n)\varphi_{n+2},$$

$$\rho(V_-)\varphi_n = (S+1-n)\varphi_{n+2},$$

and

$$\rho(D)\varphi_n = \frac{S^2 - 1}{2}\,\varphi_n$$

where V_{+} and V_{-} and D are as in the proof of Theorem 2.2.

On the other hand, we can obviously choose the length of v_0 arbitrarily, say $a_0 > 0$, i.e., $\langle v_0, v_0 \rangle = a_0^2$ where $a_0 > 0$.

From $(\rho(V_+)\rho(V_-) - \rho(V_-)\rho(V_+))v_n = -4i\varphi(U) = 4nv_n$, we get the condition $C_n - C_{n+2} = 4n$. From the skew-Hermitian conditions $\langle \rho(V_+)v_n, v_{n+2} \rangle = \langle v_n, -\rho(V_-)v_{n+2} \rangle$, we get the relation $a_{n+2}^2 = -\overline{C}_{n+2}a_n^2$. This shows that C_n is necessarily real and negative, and a choice of C_0 completely determines C_n for all n. The possible unitarization therefore depends uniquely on the choice of a negative number C_0 . A similar discussion can be carried out for the case when the parity is odd. Consequently, we see that the condition for C_0 to be negative amounts to $(S^2-1)=(S+1)(S-1)<0$. This amounts to S being pure imaginary or S real and -1 < S < 1. The case when $-1 < S < 1(S \neq 0)$ can be unitarized by completing H(K).

COROLLARY 2.4. We can get the complementary series of $GL_2(\mathbb{R})$ arising from the intervals 0 < S < 1 and -1 < S < 0 as follows:

$$H(S) = \left\{ f: \mathbb{R} \to \mathbb{C} \big| \|f\|^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f(x)\overline{f(y)}dx\,dy}{|x-y|^{1\pm S}} < \infty \right\}$$

and set $\Pi_S(g)f(x) = |bx + d|^{S^{\frac{1}{4}}} f\left(\frac{ax+c}{bx+d}\right)$.

3. Unitary series of $GL_2(\mathbb{C})$

In this section we induce two different unitary irreducible representations of $GL_2(\mathbb{C})$. They are unitary principal series and unitary complementary series [8]. $GL_2(\mathbb{C})$ does not have a compact Cartan subgroup, so it does not have a discrete series representation [8].

EXAMPLE 3.1. Consider the finite dimensional irreducible representation of $GL_2(\mathbb{C})$. The matrix $\begin{pmatrix} 1 & 0 \\ z_{21} & 1 \end{pmatrix}$ is identified by a single complex parameter $x = z_{21}$, and we may write $f\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} = f(x)$, if f is continuous complex valued function on $GL_2(\mathbb{C})$. Then, $f\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \overline{g} = f(x)$

 $f\left(\frac{ax+c}{bx+d}\right)$, where $g=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$. We conclude that $\lambda_2+k_{22}=bx+d$,

$$\lambda_1 = k_{11} = \frac{\det \left[\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right]}{bx + d} = \frac{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}{bx + d},$$

where λ_i is the entry of the diagonal matrix group $D = \left\{ \delta = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \right\}$ and k_{ii} is the entry of the upper triangular matrix group

$$K = \left\{ k = \begin{pmatrix} k_{11} & k_{12} \\ 0 & k_{22} \end{pmatrix} \right\}.$$

The character $\alpha(\delta)$ is a continuous character of D. Then we can have $\alpha(\delta) = \lambda_1^{p_1} \overline{\lambda}_1^{q_1} \lambda_2^{p_2} \overline{\lambda}_2^{q_2}$ where p_1, q_1, p_2, q_2 are any complex numbers for which $p_1 - q_1$ and $p_2 - q_2$ are integers. Additionally, the necessary and sufficient condition to be an inductive character $\alpha(\delta)$ is that $r = p_2 - p_1$ and $s = q_2 - q_1$ are nonnegative integers, and $\alpha\left(\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \left(\frac{\det g}{bx+d}\right)^{p_1} \left(\frac{\overline{\det g}}{ax+c}\right)^{q_1} (ax+c)^{p_2} (\overline{bx}+\overline{c})^{q_2} = (\det g)^{p_1} (\overline{\det g})^{q_1} (bx+d)^{p_2-p_1} (\overline{bx}+\overline{d})^{q_2-q_1}$. Therefore, the finite dimensional irreducible representation of $GL_2(\mathbb{C})$ is $F_{\alpha}^n(g) f(z) = \alpha\left(\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot f\left(\frac{ax+c}{bx+d}\right)$.

THEOREM 3.2. The nontrivial unitary principal series of $GL_2(\mathbb{C})$ is realized as follows:

$$P_{(\lambda+1,\mu+1)}(g)f(z) = (bz+d)^{\lambda}(\overline{b}\overline{z}+\overline{d})^{\mu}f(\frac{az+c}{bz+d})$$

where

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C}).$$

Proof. Let $R(g)f(z) = f(g^t z)$, $g \in GL_2(\mathbb{C})$, $z \in \mathbb{C}^2$. In this case, R(g) commutes with the group of complex dilations: $D(a)f(z) = |a|^2 f(az)$,

 $a \in \mathbb{C}^{\times}$. We expect to decompose R into irreducible via the spectral decomposition of D.

Since $\mathbb{C}^{\times} = S^1 \times R^+$, this decomposition is accomplished by combining Fourier series and the Mellin transform. Thus given $\beta(\theta,t)$ on $S^1 \times R^+$, set $S\beta(n,S) = \int_0^\infty \int_{S^1} \beta(\theta,t) e^{in\theta} t^{-iS} d\theta dt$ for $n \in \mathbb{Z}, x \in \mathbb{R}$. Then we get the inversion formula

$$\beta(\theta,t) = (2\pi)^{-2} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} S\beta(n,S) e^{in\theta} t^{iS-1} dS$$

and the Plancherel formula

$$\int_{R^+} \int_{S^1} |\beta(\theta, t)|^2 t \, d\theta \, dt = (2\pi)^{-2} \sum_{n = -\infty}^{\infty} \int_{-\infty}^{\infty} |S\beta(n, S)|^2 dS.$$

Thus, if we define

$$P_{n,S}f(z) = \int_0^\infty \int_{S^1} f(re^{i\theta}z)e^{-in\theta}r^{-iS}d\theta dr,$$

we see that, for $f \in C_0^{\infty}(\mathbb{R}^4)$, $P_{n,S}f$ belongs to the space

$$\begin{split} \mathcal{H}_{n,S} &= \{g \in L^2(R^4 \backslash 0) : g(re^{i\theta}z) = r^{iS-1}e^{in\theta}g(z), \\ &r > 0, \ e^{k\theta} \in S^1, \ \text{and} \ \int |g|^2 < \infty \} \end{split}$$

We make $\mathcal{H}_{n,S}$ into a Hilbert space, with norm square $\int_{R^4\setminus 0} |g|^2$. Therefore we get a representation on $\mathcal{H}_{n,S}$ given by $\pi_{n,S}(g)f(z) = f(g^tz)$, $f \in \mathcal{H}_{n,S}$ and then we can induce the homogeneity condition

$$g(az) = a^{\lambda} \, \overline{a}^{\mu} g(z), \quad a \in \mathbb{C}^{\times}$$

with $\lambda = \frac{1}{2}(iS - 1 + n)$, $\mu = \frac{1}{2}(iS - 1 - n)$. By restricting the argument of an element of $\mathcal{H}_{n,S}$ to the hyperplane $z_2 = 1$ and applying the result of Example 3.1, e can make $\mathcal{H}_{n,S}$ unitarily equivalent to a representation as given in the statement of the theorem.

COROLLARY 3.3. The complementary series of $GL_2(\mathbb{C})$ is given by the formula

$$C^{S}(g)f(z) = (bz+d)^{t-1}(\overline{b}\,\overline{z}+\overline{d})^{t-1}f\left(\frac{az+c}{bz+d}\right)$$

with the inner product

$$(f_1, f_2) = (i/2)^2 \int_{\mathbb{C}^2} |z_1 - z_2|^{-2t - 2} f_1(z_1) \overline{f_2(z_2)} \, dz_1 \, \overline{dz_1} \, dz_2 \, \overline{dz_2}$$

and $\lambda + 1 = \mu + 1 = t$.

Proof. Applying Theorem 3.2 and using the results of [5] and [8], we can get the above complementary series.

References

- V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. 2 (1947), 568-640.
- 2. G. Harder, Eisentein cohomology of arithmetic groups, The case GL_2 , Invent. Math. 89 (1987), 37-118.
- M.J. Heumos, and S. Rallis, Symplectic-Whittaker modules of GL(n), Pacific J. Math. 146 (1990), 247-279.
- 4. H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Math., vol.114, Springer Verlag and Berlin, 1970.
- 5. A. W. Knapp and N. B., Wallach, Representations of $GL_2(\mathbb{R})$ and $GL_2(\mathbb{C})$, Proc. Sympos. Pure Math. 33 (1979), 87-91.
- 6. S. Lang, $SL_2(\mathbb{R})$, Springer-Verlag, 1985.
- 7. B. Spech, Unitary representations of $GL(n, \mathbb{R})$ with nontrivial (\mathcal{G}, K) -cohomology, Invent. Math. 71 (1983), 443-465.
- 8. R. O. Taylor, Noncommutative harmonic analysis, Amer. Math. Soc. 22 (1986).
- R.O. Wells, The mathematical heritage of Hermann Weyl, Proc. Sympos. Pure Math. 48 (1988).

Department of Mathematics Inha University Incheon 402-751, Korea