Proceedings of the Computational Structural Engineering Institute Conference
/
1990.10a
/
pp.79-84
/
1990
The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the autoregressive and moving average model with auxiliary stochastic input (ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then, the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story building model subject to ground exitations.
The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the auto regressive and moving average model with auxiliary stochastic input(ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story budding model subject to ground exitations.
Transactions of the Korean Society of Mechanical Engineers A
/
v.31
no.1
s.256
/
pp.55-61
/
2007
Recently simulation model becomes an essential tool for analysis and design of a system but it is often expensive and time consuming as it becomes complicate to achieve reliable results. Therefore, high-fidelity simulation model needs to be replaced by an approximate model, the so-called metamodel. Metamodeling techniques include 3 components of sampling, metamodel and validation. Cross-validation approach has been proposed to provide sequnatially new sample point based on cross-validation error but it is very expensive because cross-validation must be evaluated at each stage. To enhance the cross-validation of metamodel, sequential sampling method using candidate points and representative cross-validation is proposed in this paper. The candidate and representative cross-validation approach of sequential sampling is illustrated for two-dimensional domain. To verify the performance of the suggested sampling technique, we compare the accuracy of the metamodels for various mathematical functions with that obtained by conventional sequential sampling strategies such as maximum distance, mean squared error, and maximum entropy sequential samplings. Through this research we team that the proposed approach is computationally inexpensive and provides good prediction performance.
It is reported that genome-wide RNA-seq profiles has potential as biomarkers of aging. A number of researches achieved promising prediction performance based on gene expression profiles. We develop an age prediction method based on the transcriptome of human dermal fibroblasts by selecting a proper age interval. The proposed method executes multiple rules in a sequential manner and a rule utilizes a classifier and a regression model to determine whether a given test sample belongs to the target age interval of the rule. If a given test sample satisfies the selection condition of a rule, age is predicted from the associated target age interval. Our method predicts age to a mean absolute error of 5.7 years. Our method outperforms prior best performance of mean absolute error of 7.7 years achieved by an ensemble based prediction method. We observe that it is possible to predict age based on genome-wide RNA-seq profiles but prediction performance is not stable but varying with age.
Proceedings of the Computational Structural Engineering Institute Conference
/
1994.10a
/
pp.175-182
/
1994
As for the safety evaluation of existing large-scale structures, methods for estimation of the structural and dynamic properties are studied. Sequential prediction error method in time domain and improved FRF estimator in frequency domain are comparatively studied. For this purpose, impact tests of 2 bay 3 floor steel frame structure are performed. Results from both methods are found to be consistent to each others, however those from the finite-element analysis are slightly different from experimental results.
Sums-of-Products models were built for segment duration prediction of spoken Korean. An experiment for the modelling was carried out to apply the results to Korean text-to-speech synthesis systems. 670 read sentences were analyzed. trained and tested for the construction of the duration models. Traditional sequential rule systems were extended to simple additive, multiplicative and additive-multiplicative models based on Sums-of-Products modelling. The parameters used in the modelling include the properties of the target segment and its neighbors and the target segment's position in the prosodic structure. Two optimisation strategies were used: the downhill simplex method and the simulated annealing method. The performance of the models was measured by the correlation coefficient and the root mean squared prediction error (RMSE) between actual and predicted duration in the test data. The best performance was obtained when the data was trained and tested by ' additive-multiplicative models. ' The correlation for the vowel duration prediction was 0.69 and the RMSE. 31.80 ms. while the correlation for the consonant duration prediction was 0.54 and the RMSE. 29.02 ms. The results were not good enough to be applied to the real-time text-to-speech systems. Further investigation of feature interactions is required for the better performance of the Sums-of-Products models.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
1999.10a
/
pp.345-350
/
1999
The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.
Proceedings of the Computational Structural Engineering Institute Conference
/
1995.04a
/
pp.136-143
/
1995
The problem of the structural identification becomes important, particularly with relation to the rapid increase of the number of the damaged or deteriorated structures, such as highway bridges, buildings, and industrial facilities. This paper summarizes the recent studies related to those problems by the present authors. The system identfication methods are generally classified as the time domain and the frequency domain methods. As time doamin methods, the sequential algorithms such as the extended Kalman filter and the sequential prediction error method are studied. Several techniques for improving the convergences are incorporated. As frequency domain methods, a new frequency response function estimator is introduced. For damage estimation of existing structures, the modal perturbation and the sensitivity matrix methods are studied. From the example analysis, it has been found that the combined utilization of the measurement data for the static response and the dynamic (modal) properties are very effictive for the damage estimation.
Design of a linear predictor and matching of an entropy coder is the art of lossless audio coding. In this paper, we use the covariance method and the Choleskey decomposition for calculating linear prediction coefficients instead of the autocorreation method and the Levinson-Durbin recursion. These results are compared to the polynomial predictor. Both of them, the predictor which has small prediction error is selected. For the entropy coding, we use the Golomb-Rice coder using the block-based parameter estimation method and the sequential adaptation method with LOCO-land RLGR. The proposed predictor and the block-based parameter estimation have $2.2879%{\sim}0.3413%$ improved compression ratios compared to FLAC lossless audio coder which use the autocorrelation method and the Levinson-Durbin recursion. The proposed predictor and the LOCO-I adaptation method could improved by $2.2879%{\sim}0.3413%$. But the proposed predictor and the RLGR adaptation method got better results with specific signals.
Proceedings of the Computational Structural Engineering Institute Conference
/
1996.04a
/
pp.119-126
/
1996
In this paper, a method of substructural identification is presented for the estimation of localized structural parameters. for this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for the substructure to process the measurement data impaired by noises. The sequential prediction error method is used fer the estimation of unknown localized parameters. Using the substructural method, the number of unknown parameters can be reduced and the convergence and accuracy of estimation can be improved. For some substructures, the effect of the input excitation is expressed in terms of the responses at the inferences with the main structure, and substructural identification may be carried out without measuring the actual input excitation to the whole structure. Example analysis is carried out for idealized structural models of a multistory building and a truss bridge. The results indicate that the present method is effective and efficient for local damage estimation of complex structures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.